UNIVERSITE DE GENEVE FACULTE DES SCIENCES
Section de Physique Professeur J.-P. ECKMANN

Comportement Asymptotique d’Equations

a Derivees Partielles Stochastiques

THESE
présenéea la Facuke des Sciences
de I'Universi€é de Gerve

pour obtenir le grade de Docte@s Sciences,
mention physique

par

Martin HAIRER

Autriche

These No 3XXX

GENEVE
Atelier de reproduction de la Section de Physique
2001






Remerciements

Lorsqu’arrive le moment de tirer un bilan de trois ées passesa travailler sur une #se,

il convient de s’interroger sur les personnes qui nous oréeadlirectement ou indirecement
dans ce parcours. Une tellémarche comporte toujours le risque d’'un oubli involontaire et je
ne ferai certainement pas excepti@rcette egle. Je demande donc en tout premier lieu aux
personnes que j'aurai oublde citer de bien vouloir me pardonner et de mettre un tel oubli sur
le compte des erreurs humaines.

La personne qui a sans contestegdel ible majeur dans €laboration de ce travail est mon
directeur de thse, Jean-Pierre Eckmann. Il a su rester disporilbteit moment et a toujours
pleinement assuenles diverses fonctions de soble avec comptence et &ieux, mais non
sans humour. Son approchedrdirecte de la science et son aptit@dsaisir I'essentiel d’'un
probleme auront, je I'esgre, une influence durable sur mon travail.

Parmi toutes les autres personnes qui ont aéodpipartager avec moi leurs connaissances
et leur vision de la science, je voudrais citer Mathieu Baillif, DirloBker, Stella Brassesco,
Sandra Cerrai, David Cimasoni, Pierre Collet, Thierry Gallay, Tarik Garidi, Ernst HairereAndr
Henriques, Markus Kunze, Olivierdveéque, Xue-Mei Li, Daniel Matthey, Jonathan Matting-
ly, Marius Mantoiu, Nicolas Musolino, Claude-Alain Pillet, Luc Rey-Bellet, Marco Romito,
Jacques Rougemont, Alain Schenkel, Armen Shirikyan, Ar@tefanov, Larry Thomas, Guil-
laume van Baalen, Gerhard Wanner, Peter Wittwer, Lai-Sang Young et Emmanuel Zabey.

Un travail de tlése ne seesume jamaia la seule @marche scientifique. C’est pourquoi je
voudraisegalement remercier ici ma famille ainsi que mes amis. &esgu’ils se reconnont
tous sans que je doive les citer individuellement par peur d’'une omisswgitable.

Je remercie aussi®ald Knuth et Leslie Lamport pour avoiré&velopge TeX et IATEX res-
pectivement. Je ne sais pas jen serais dans laédaction de ce travail sans ces outils aussi
indispensables que@lustes.

Enfin, je voudrais exprimer ma gratitude aux membres du jugyatd Ben Arous, David
Elworthy et Peter Wittwer d’avoir accept’endosser cette responsabhilit






Table des Matieres

| Introduction 1
1 Pesentation du Magle et Formulationdu Prodine . . . . . . . ... ... ... .... 4
2 Unicite de la Mesure Invariante — Techniques dmionstration . . . . . ... ... ... 5

2.1 Lanethodedeladissipatigt. . . . . . ... ... . ... ... . ... .. ..., 5
2.2 Lanethodedurecouvrement . . . . . . . . . . . ... 6
2.3 Lanethodeducouplage ... ... ... . . . . ... ... 7
3 Unicite de la Mesure Invariante -€Rultats Obtenus . . . . . . . ... ... ... .... 8
3.1 Meéthode du recouvrement pour des situatiopgedérees . . . . . ... ... ... 8
3.2 Ceréralisation de la ®thode ducouplage . . . . ... ... ... ........ 10
4 ConclusionsetPerspectives . . . . . . . .. . ... e 12
Il Invariant Measures for Stochastic PDE’s in Unbounded Domains 15
1 Introduction . . . . . . . . e 15
1.1 Definitionsand notations . . . . .. .. .. ... .. .. ... .. e 17
2 The Stochastic Convolution . . . . . . . . .. . e 18
2.1 Basicproperties . . . . . . .. e e 18
2.2 Factorization of the stochastic convolution . . . . . . ... ... ... ..... 20
2.3 Estimateontheproce¥ss(t) . . . .. .. ... ... .. ... 21
3 Existenceofthe Solutions . . . . . . . . . . . ... ... 23
4  Analyticity of the Solutions . . . . . . . . . . . .. e 26
5 Existence of anInvariant Measure . . . . . ... ... . ... 28
A Dissipative Maps . . . . . . . . e 30

Il Uniqueness of the Invariant Measure for a Stochastic PDE
Driven by Degenerate Noise 35
1 Introduction . . . . . . . . . . e e 35
2 Some Preliminariesonthe Dynamics . . . . . . . . . . . . . . e 38
3 Controllability . . . . . . . . 39

3.1 The combinatorics for the complex Ginzburg-Landau equation . . . ... ... 42.
4  Strong Feller Property and Proof of Theorem 1.1 . . . . . .. .. ... ... ..... 43.
5 Regularity of the Cutoff Process . . . . . . . . . . . . . .. 45
5.1 Splitting and interpolationspaces . . . . . . . . . . ... .. . . 0 45
5.2 Proofof Theorem4.3 . . . . . . . . . . . . e 46
5.3 Smoothing properties of the transition semigroup . . . . . .. .. .. ... .. 47.
6 MalliavinCalculus. . . . . . . . . . . e 51
6.1 Theconstructionaf . . .. ... ... ... ... 53
7 The Partial Malliavin Matrix . . . . . . . . . . . . . . . e 56
7.1 Finitedimensionalcase . . . . . . . . . ... 56
7.2 Infinite dimensionalcase . . .. .. .. ... .. ... .. .. e 58
7.3 The restricted Brmander condition . . . . . ... ... .. L. 59
7.4 Estimates on the low-frequency derivatives (Proof of Proposition5.3) . . . . . . 64 .
8 Existence Theorems . . . . . . . . . . . e e e 66
8.1 Thenoiseterm . . . . . . . . . . ... 6.7
8.2 Adeterministicproblem . . . . . ... 69

8.3 Stochastic differential equations in Hilbertspaces . . .. ... ... ... ... 71.



8.4 Bounds on the cutoff dynamics (Proof of Proposition5.1) . . . . . ... .. .. 72

8.5 Bounds onthe off-diagonalterms . . . .. ... ... ... ........... 16
8.6 Proofof Proposition2.3 . . . . . . . .. . . . . ... . 76
IV Exponential Mixing for a Stochastic PDE Driven by Degenerate Noise 77
1 Modeland Result . . . . . . . . . . e 77
2 A \Variant of the Perron-Frobenius Theorem . . . . . ... ... .. ... .. .... 79
3 Contraction Properties ofthe Dynamics. . . . . . . . . . .. ... . ... ... 81
4 Strong Feller Chainsand SmallSets . . . ... ... ... ... .. ......... 82
4.1 Existence ofaccessiblesmallsets . . . . . ... .. ... ... ... ... ... 83.
V  Exponential Mixing Properties of Stochastic PDEs Through Asymptotic Coupling 87
1 Introduction . . . . . . . . e 87
1.1 Atoymodel . . . . . . . .. e 89
2 The Coupling Construction . . . . . . . . . . . e 91
2.1 Notations . . . . . . . . e 91
2.2 Definitionofcoupling . . . . . . . ... 92
2.3 Thebinding construction . . . . . .. .. .. .. ... .. e 93
3 Assumptionsonthe Coupling . . . . . . . . . .. 96
3.1 Lyapunovstructure . . . . . . . . . .. e e e e e e 96
3.2 Binding property . . . ... 98
4  An Exponential MixingResult . . . . .. ... ... 102
5 Application to Stochastic Differential Equations . . . . . . . ... ... ... .... 106
6 Examples . . . .. e e e 112
6.1 The Ginzburg-Landauequation . . . . . .. .. .. ... ... ......... 112
6.2 Areaction-diffusionsystem . . . . .. ... 114
6.3 A chain with nearest-neighbour interactions . . . . ... ... ... ...... 115

References 121



l. Introduction

Ce nmemoire est consagra I'etude asymptotiquea(grand temps) des solutionseduations
a cerivees partielles paraboliques perteels par une force @toire. Le prol@me principal
gue nous abordons est ladonstration de I'existence et surtout de l'uréaifun état station-
naire pour certaines classe&quations. Le prototype des préhbies que nous consgitbns est
I’ équation de Ginzburg-Landau, da®par

ou = Pu+u—u’, u(z, 0) = uo(z) , (0.2)

ou u(x,t) est une fonctionéelle et @riodique de priode2L enxz. On peut consiérer (0.1)
comme uneéquation dévolution dans un espace de Hilbert abstfdit par exempleH =
L2([—L, L],R). Il découle alors deésultats bien connus [Lun95] que les solutions de (0.1)
définissent un semifloy; }:~o surH, via la formuleu(z, t) = ¢ (up)(z).

Deséquations du type (0.1) (comme par exemple auggulation de Swift-Hohenberg qui
peutétre tratée de la r@me margre) servena decrire une multitude de prodaines physiques.
Quelques exemples sont d@spar la croissance d’interfaces, les flots de Couette-Taylor ou en-
core I'eévolution d’'unéchantillon dans lequel coexistent deux phases stables comme par exemple
un syséme ferromagetique. Dans un mondeaédli€ sans bruit, BEquation éterministe (0.1)
donnerait une description correcte de€pbnenes obsels. Une formulation plus proche de
la nature est obtenue en ajoutant un terme de bruit. Il existe plusieurs causes physiques donnant
lieu a un tel bruit.

e Uneéquation du type (0.1) eseégeralement vue comme limite hydrodynamique d’une
dynamigue microscopique sous-jacente. Toutessyst Eel est fini et comporte donc des
fluctuations dans les variables macroscopiques dumtte dynamique microscopique.
Ainsi, il est possible de &@hiver la version stochastique de (0.1) comme limite macro-
scopique de la dynamique de Glauber (voir par exemple l'article de revue [GLP99]).

e L'interaction d’'un systme avec un environnemenéatoire donnégalement liewa des
fluctuations dans les observables macroscopiques.

D’un point de vue aussi bien mamatique que physique, il eéfgalement iréressant
d’étudier quelles caragtistiques de (0.1) sont @enees sous des perturbations stochastiques
et lesquelles ne le sont pas.

Avant de discuter de I'effet d’un termeéadtoire sur cettéquation, cherchorsscomprendre
sa dynamique @terministe. Pour une expositiogtdillee de cette dynamique, nous renvoyons
le lecteur aux travaux [CP89, CP90, ER98, Rou99]. Calculons d’abord les points fixes de (0.1).
Il s’agit donc de trouver des solutiof4,-péeriodiquesa I'équation

Put+u—u*=0. (0.2)

Si I'on interprete la variable: comme une position et la variable: comme un temps, on voit
gue I'equation (0.2) egtquivalente au systme Hamiltonien

q = aPH(pa q) ’ p = _8QH(p7 Q) ' (03)
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Figure 1: Potentiel et lignes de niveau pour (0.3).

avec
2

Hp.) =2 + V),  Vi=—0-¢)

La Figure 1 ci-dessus montre la forme du potenitiehinsi que les lignes de niveau dledans
I'espace f, q). Les lignes dess@es en gras correspondent aux soluticgrgoliques de @riode
2L pour L = 8.

En plus des trois solutions triviales= 0 etu = +1, il existe dans ce cas deux familles
de points fixes paraétrisces par leur phase. Urgtude de stabil permet de voir que les
points fixesu = +1 sont lirairement stables, alors que les autres points fixeedest des
varietes instables de dimension finieeftendant de la valeur dg), voir par exemple [CP90].
L'ensemble de ces points fixes et de leurs@&tas instables &finit I attracteur.4 de (0.1), en
d’autres termesA est un ensemble compact, invariant sous le semiflat qui attire chaque
ensemble bom suffisamment grand.

Cet attracteurd caracérise une partie du comportement asymptotique des solutions dans le
sens que toutes les solutions finiront par se trouver arbitrairement prochefodsgu’on fait
tendre le tempsvers l'infini. (Dans I'exemple cons@&é, on peut montrer que toutes solutions
convergent finalement vers un des points fixes duesyst) Neanmoins, réame si on peutéfinir
des attracteurs stochastiques [CDF97], la notion d’attracteur (ou de point fixe) n’estgiaietr
adapéea I'étude de sysimes perturbs par du bruit, surtout si I'on s’iatesse leurs propgtes
statistiques, pldtt qu’au comportement d’'une trajectoire partiend.

En effet,étant donie une observablg@ du syseme (c’esta-dire une fonction mesurable et
borreeG : ' H — R), on s’ineresse souvemtla convergence desoyennes empiriqueknrees

par
T

(@)= Jim = ["(Gop)u)dt. 0.4)

(On prendra I'esprance de I'expression de droite dans un contexte probabiliste.) Une telle
limite n’existe pas forement et, rdme si elle existe, elle peut bietrgependre de la condition
initiale uo. Dans notre cas, par exemple, on aura pour des observables cori@ifiues=(u ),

ou u est le point fixe vers lequel la solution converge. Dans certainsaasmoins, le sysme

perd la némoire de sa condition initiale sous l'influence d’un bruitgidur ou d’une chaotidt
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intrinseque. Dans ce cas, il arrive que la limite (0.4) existe et soimmpour “la plupart” des
conditions initiales.y. On peut alors trouver une mesurasur telle que, pour la plupart des
conditions initiales,

(@) = /H G(u) pdu) . (0.5)

Si une telle mesurg existe, elle sera une mesure invariante pour (0.1).

De manere ¢gerérale, unenesure invariant@our (0.1) est une mesure de BoregdurH qui
reste inchange lorsqu’on la transporte avec le semiflgt En d’autres termes, une mesure
est invariante lorsque

1(A) = u(e; ' (4)) ,

pour tous les temps> 0 et pour tous les ensembles BbensA C H. Il ressort de la dfinition
des moyennes empiriques que s'il existe une megwsaisfaisant (0.5), alors est une mesure
invariante. En effet, notant par, la fonction carad@ristique d'un ensemblg, on a

o () = [ o) = (g = M [l un)) ds
.1 T 1 T+t
= Jim = [ xalerstuo)ds = fim 2 [T e ds  (06)
= (xa) = (A) .

On voit donc que Etude des mesures invariantes d’'un &g est primordiale dans la carac-
terisation de son comportement asymptotique.

Il ressort de la discussion sur la dynamique du&@yst éterministe qu’il existe beaucoup
de mesures invariantes difentes pour (0.1). |l suffit de prendre par exemple une mesure de
Dirac concent&e sur un des points fixes dédjuation. On peut se demander si, parmi toutes
ces mesures invariantes, il en existe une qui soit plus “naturelle” que les autres. Upesdani
caracériser une mesure invariante naturelle est de demander gu’elle soit stable sous I'addition
d’'une perturbation stochastique au gyse. Dans le cas de certains gyses chaotiques, les
mesures SRB (Sinai, Ruelle, Bowen) padsnt justement cette propg [Col98]. Il est donc
intéressant de se demander combien de bruit il faut ajeutersystme pour qu’il ne possie
plus qu’une seule mesure invariante.

L’avantage de consater uneequation “bruiee” est que, dans de nombreux cas de figure,
son comportement asymptotique est beaucoup plus sergglerire. En effet, nous verrons dans
les chapitres suivants que @me sous l'addition de “peu” de bruit, les solutions de la version
stochastique de (0.1) tendent vers une unique mesure invariante. Une queétiessantte et
qui reste ouverte est de savoir s'il existe un moyen de faire tendre le bruii garpermette de
prouver que la suite de mesures invariantes ainsi obtenuegmsse limite et pas seulement
des points d’accumulation. Cette limite serait alors un candidat naturel au titre de “mesure
SRB” pour un tel systme.
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1 Présentation du Mockle et Formulation du Probleme

Dans cette section, nous allons formuler plusg®ement de quelle magie un terme stochas-
tique est ajowa (0.1). Nous consi&rons lequation donae formellement par

Ou = u+u—u’ + > qieidw; u(zx,0) = ug(x) . (1.2)
=1
Dans cetteequation, leg; sont des nombres positifs ou nuls unif@ment boras,{e; }°, est
une base orthonorée deH qui diagonalise I'oprateur lirgaired? et lesw; sont des mouve-
ments Browniens inebendants, de maarea ce que I'expressiofw; denote un bruit blanc.
Uneéquation du type (1.1) est habituelleméntite sous la forme abstraite

du = Audt + F(u)dt + Q dW (t) , w(0) = ug . (1.2)

Ici, A denote I'ogerateur lirgaired? de domaineD(A), F est I'opérateur nonligaireu — u—u?
de domaineD(F), (Q est l'operateur lireaire boré donre parQe; = ¢e; et W dénote un
processus de Wiener cylindrique sty formellement dona pariWW () = -2, e; w;(t). Nous
désignons part{, .#, P) 'espace de probabiBtsous-jacera V.

Nous appelons solution de (1.2) un processus stochastidu@ valeurs dang{ tel que
u(t) € D(F) pourt > 0 et

u(t) = ety + /Ot A=) P (u(s)) ds + /Ot eA=DQ dW (s) . (1.3)

Pour une éfinition rigoureuse de lirigrale stochastique apparaissant dans (1.3), voir par ex-
emple [DPZ92b]. Nous dirons que la solution de (1.8}imit un flot stochastique si les appli-
cations

e w): H—H

ug — u(t,w)

sont continues pouP-presque toutv € 2. Le theoeme d’existence suivant peétre cerive
facilement desésultats pesenés dans [DPZ96]:

Théoreme 1 L'équation (1.1) pogsie une unique solution quéfinit un flot stochastique;.

Ce tteoeme nous permet deefinir, a I'aide du flot stochastique;, uneévolution sur les
observables-, ainsi qu'uneévolution duale sur les mesurgpar les formules:

(PG (u) = E(G o ¢,)(u) ueH, (1.4a)
(P/u)(B)=E(noy;')(B), BCH. (1.4b)

Avec ces éfinitions, une mesure invariante pour le paghk (1.2) est simplement un point fixe
deP;. Le probEme que nous abordons dans ce travail est I'existence et l@mitine telle
mesure invariante.

Dans le cadre du probine que nous venons dedatire, I'existence d’une mesure invariante
est relativement agea obtenir. En effet, par le #oeme d’existence de Krylov-Bogolyubov



INTRODUCTION 5

[DPZ96], il suffit de montrer que, pour une mesurdonree, la suite des moyennes empiriques
donrées par

1T
T/o Prudt (1.5)

pos&de au moins un point d’accumulation lorsdlie— oo. Ceci cecoule des propetes de
régularisation de I'oprateuret. Ainsi, on peut montrer que les solutions de (1.1) appartiennent
presque 8rement un espace de SobolgV tel que l'inclusion®V C ‘H est compacte. De plus,

il est possible d’obtenir des estimations uniformes en temps sur les moments de la norme de la
solution dans/. Par conéquent, la suite des moyennes empiriques est tendue édgodsnc

au moins un point d’accumulation (dans la topologie faible-*) [Bil68].

Néeanmoins, nous verrons au Chapitre Il une situation dans laquelle la preuve de I'existence
d’'une mesure invariante n'est pas aussi simple. C’est le cas notamment lorsque la variable
spatialer n’est pas restreinta un intervalle mais peut prendre ses valeurs sur toute la droite
reelle. En effet, 'ograteure’ n’est alors plus compact, ce qui complique I'argumentation
ci-dessus. Dans la suite de cette introduction, nous discuterons principalement éerer ole!
I'unicité de la mesure invariante pour deguations du type (1.2).

2 Unicité de la Mesure Invariante — Techniques de Bmonstration

Avant d’énoncer quelque£sultats obtenus dans ce travail, nous donnons un bref apercu his-
torigue des rathodes connues et de leur champ d’application. Cet historiqueétendrpas

étre exhaustif, mais il nous semble qu’il couvre lesthodes dont I'impact até le plus impor-

tant dans la comphension du probme. Pour un apercu des principaux travaux couvrant les
deux preméres nethodes prsenges ci-apes, le lecteur seefereraa I'excellent travail de revue

de Maslovski et Seidler [MS99]. Un exposktaille des esultats obtenus, ainsi que de leurs
demonstrations pewtre troue dans la monographie [DPZ96].

2.1 La méthode de la dissipativié
Cette nethode s’appliqua des situationsiole probeme lireaire
= Au+ F(u) (2.1)

assoct a (1.2) posade de bonnes progtes de dissipation. Une condition typique conseste
imposer I'existence d’une constante> 0 telle que, pour toutes les fonction®tv appartenant
aux domaines dd et def’, on ait I'inégalie

(Au — Av,u —v) + (F(u) — F(v),u —v) < allu—vl?. (2.2)

Cette condition implique que le sgshe @éterministe posxle un seul point fixe et que toutes
les solutions s’en approchent avec un taux exponentiel. On peut alors construire ung deite
variables &atoires obtenues @valuant au tempis= 0 la solution du systme (1.2), avec pour
condition initialeu(—T) = u,. Cette suite de variableséaltoires converge dan3(L2, P) vers
une vaiable @atoireu,,, dont on peut montrer qu’elle né&dend pas de,. Cette convergence
est exponentielle avec un taux comme on peut le voir intuitivement de la condition (2.2). La
loi de u., est la mesure invariante rechegeh

Remarguons encore que l&thode de la dissipatiétne épend que &s peu de la nature du
bruit. Elle n’utilise d’ailleurs pas du tout le bruit pour obtenir 'uné&ide la mesure invariante.
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2.2 La méthode du recouvrement

Contrairement la méthode de la dissipativt la nethode du recouvrement utilise le bruit de
mankre cruciale. Bnotons paP;(u, - ) la famille de mesures st donnant les probabiéis de
transitiona tempg pour les solutions de (1.2), c’eatdire que

P,(u, B) = P(¢i(u) € B) .
La méthode du recouvrement est bagprincipalement sur la constatation suivante:

Proposition 2 Supposons qu'il existe un temps> 0 et une mesure positive (non-nulle)
telle queP;(u, B) > 4 pour tous lesu € H. Alors, I'opérateurP;. défini dans (1.4b) est une
contraction sur les mesures de probal@ldans la norme de variation totale.

La déemonstration de cdé&inon@ estélementaire. Prenons deux mesures de probabilit »
mutuellement sigudires. Nous avons alof8}. > 6 et P;v > 6. Il y a donc un recouvre-
ment de massk ||, entre ces deux mesures. Ce recouvrement s’annule lorsque 'on prend la
difféerence et I'on a ainsi

|Prp = Prvlley < (1= [18]lnv)lle = vllvv -

Cette formule est aignent @réralisable au cas de deux mesures quelconques. Ceci implique
gu'il existe une et une seule mesure de probdbititzariante pour (1.2) et que la convergence
des probabiliés de transition vers cette mesure invariante est exponentielle dans la norme de la
variation totale. En@réeral, un systme donig ne montrera pas un recouvrement aussi uniforme
gue ce gque nous supposons dans la Proposition 2, maie Kdra la iame.

La technique habituelle afin d’obtenir une estimation sur le recouvrement esétitiendes
trois proprétés suivantes pour les solutions de (1.2).

(a) Ladynamique est fortement Feller, c'éstlire que 'ograteurP; déefini en (1.4a) envoie
les fonctions borees mesurables sur des fonctions kescontinues.

(b) La dynamique est topologiqguemeng&ductible, c’esta-dire que les probabiéit de tran-
sition satisfontP,(u, B) > 0 pour toutu € H et pour tout ouverB C H.

(o) Il existe un compacf{ qui attire les solutions, dans le sensles temps de retour vers
K et les temps d’enée dands sont bien confilés.

Les deux prentires propites suffisent €ja, par le tkoeme de Doob [Doo48R garantir
I'unicité de la mesure invariante (si elle existe). La diffieuktchnique principale consiste
démontrer que la dynamique est fortement Feller. Cette diféasgt esolue en dimension finie
par le criere de Hhrmander [Hbr67, HOr85, Mal78, Str86, Nor86]. Ce céite dit que, pour que
la dynamique §réree par les solutions deguation de Stratanovitch

dx = fo(x) dt + f:fz(x) odw , reR", (2.3)
i=1

soit fortement Feller, il est suffisant que les champs de vecteurs

fio U fils Wi il Al i=100om, jik=0,...,m,
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engendrent touR"™ en chaque point. Dans cette expressior flésigne le crochet de Lie entre
deux champs de vecteurs (qui égl au commutateur, si on integpe les champs de vecteurs
comme des agrateurs diferentiels). Malheureusement, il n’existe pas encore derergeréral
equivalent en dimension infinie. Un outiles utile en dimension infinie est la formule de
Bismut-Elworthy [Bis84, EL94]. Celle-ci permet d’exprimer l&ri/ee deP,G en terme de
G et du flotp; de la mangre suivante:

(DPG)wh = 1E((G o p)w) [ (Q7 (D) aiv(s))) @4

Néanmoins, afin de pouvoir utiliser la formule (2.4), il faut que I'image dedtapeur() con-
tienne I'image deDy,. Cette formule n’est donc applicable telle quelle pratiquement que dans
des situationswl'image de( est dense dar§.

2.3 La méthode du couplage

De manere ¢erérale, si 'on se donne une mesure de probaijlisur un espacé/ et une
mesure de probabiétr sur un espacé/, uncouplagepour la paire f, ) est la donge d’'une
mesure de probabiétP sur M x N, telle que les marginales d(donc les projections de
sur M et N) sont péciementy etv. Ce que I'on appelle un couplage pour (1.2) est donc la
donrée d’'un processus stochastiquét), v(t)), tel queu etv pris £paément sont des solutions
de (1.2) (avec pour conditions initialag etvy). S’il est possible de construire ce couplage de
mankirea ce que la distance entueet v tende vers &ro pour de grands temps, 'unigitle la
mesure invariante suit (voir Section 3.2 ci-@g).

La méthode du couplage et son application aux protds d’ergodicé et d’unicié de I'etat
stationnaire ont une longue histoire. Les preras applications semblent remonter aussi loin
gue Doeblin [Doe38] dansdtude de chHaes de Markov ayant un nombre finiedats. Dans un
contexte et une formulation un peu plus proches de ce que nous abordons dénsaeentette
technique &t utilisee par Vaséitan et Dobrin [Vas69, Dob71] dansétude de sysimes de
spins. Ce domaine d’application a dénlieu a une multitude de travaux; pour un travail de
revue de cettépoque, nous renvoyons le lecteuiig77].

A notre connaissance, lagthode du couplage a pour la préma foiséte appliqee dans
le cadre de€quationsa derivées partielles stochastiques dans [Mue93]. déiétait alors de
choisir le couplage de masmea ce que, lorsque s'approche de, les deux processus s’attirent
et finalement se “collent” 'ura I'autre. Une fois qu’ils sont cdds dans uneggion spatiale, ils
y restent cokks pour les temps futurs. Plugprement, le couplage est fait de marga ce que
le processug = |u — v| se comporte comme les solutions de

do = Nodt + o2 dW (t) .

Il est bien connu que les solutions de cetpiations atteignent = 0 en temps fini avec pro-
babilite 1. Cette techniqua égalemenéte appliqee avec suesa I'étude de de la propagation
de fronts pour quation de Kolmogorov-Petrovskii-Piscuinov avec bruit [MS95c].
Beaucoup plusacemment, un autre type de construction pour éhwode du couplage est
apparu dans uneege d’articles sur les profiés ergodiques dedfuation de Navier-Stokes
bidimensionelle (voir [KS01, Mat01, MY01] et leéferences dorgesa la Section V.6). L'iée
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qui appar#@ dans ces travaux est déabmposer I'espack en une partie “stable’, et une
partie “instable”?, et de supposer que le bruit agit sur la partie instable, éetite que
I'image de( estégalea (ou du moins contienf),,,. On supposera de plus que la parti&€hire
A laisse invariante cetteedomposition. L&quation (1.2) devient alors

du, = Ay, dt + F(uy, ug) dt + Q dW (t) (2.5a)
dus = Agug dt + Fy(uy,, us) dt . (2.5b)

Dans cette dcomposition, on choisira la partie stalite de manérea ce quegtant donge
une trajectoire.,,, deux solutions quelconques deduation (2.5b) avec des conditions initiales
differentes convergent toujours 'une vers l'autre.

D’autre part, comme le bruit agit de facon noaedrérée sur la partie instable (2.5a), il y
a un moyen de construire un couplagét), v(t)) avect € [0, 1], tel quewu,(1) = v,(1) avec
une probabilié non-nulle, quelles que soient les conditions initial€®) et v(0). Ces deux
constatations permettent alors de construire un cougla@g v(t)) (cette fois avec le temps
t € [0, 00)), tel gu'il existe un temps &htoirer avec la prop@t queu,(t) = v,(t) pour tous
les tempst > 7. Sion peut montrer que est presquelsement fini, I'unicié de la mesure
en cecoule. On peuégalement obtenir des estimations sur la vitesse de convergence vers cette
mesure invariante si I'on sait estimerainsi que le taux de stabéitde (2.5b).

Dans ce ramoire, nous appliguerons aux chapitres Il et IV lathode du recouvrement
a une situation o 'image de(@ n’est pas dense darig, en combinant un argumeast la
Hormander avec une version mod#dide la formule de Bismut-Elworthy. Nousrgraliserons
également au Chapitre V laéthode du couplaga des situationswole bruit agit de facon
déegererée sur la partie instable deefjuation. Une fsentation plusé&taillee de cesasultats
est I'objet de la section suivante.

3 Unicité de la Mesure Invariante — Resultats Obtenus

3.1 Meéthode du recouvrement pour des situations @genérées

Dans cette partie du @moire, qui fera I'objet des chapitres Il et IV, nous coishs lequa-
tion de Ginzburg-Landau stochastique deemar

O = Ou+u—u’ + Z gieiOyw; u(z,0) = up(x) , (3.1)

=1

avecr € [—L, L] et des conditions aux bord€podiques poumn. Pour des raisons tech-
niques, nous considons cett&quation non pas dans I'espacg[ L, L]), mais dans I'espace
de Sobolevit = W3 ([—L, L)) des fonctions priodiques dans®eta cerivee dans £. Nous
dénotons de plus p&;(u, - ) les probabilies de transition suk induites par la solution de (3.1).
Nous supposons qu’il existe des constantes, et k., ainsi que des exposantset (3
satisfaisant
a>4 et a—1/4<p<a, (3.2)

tels que
ak ™ <q, <k pourk > k,. (3.3)
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Remarquons qu’aucune supposition n’est faite sur la taille,.dai sur les valeurs de, pour
k < k.. Ces valeurs de, peuvent par exempletre choisies nulles. Notr@sultat est alors le
suivant.

Théoreme 3 Supposons que les valeurssatisfassent (3.3). Alors,dfuation (3.1) posxie
une unigue mesure invariante sur’ et il existe des constantés~ > 0 telles que

HPt(Ua ) — N*”Tv < Ce ™,

pour toutt > 0 et pour toutu € H.

Voici les idées principales permettant dérdontrer ce teoeme. La @marche grérale
consistex \erifier les propétes @), (b) et (c) de la Section 2.2. La difficludttechnique principale
consistea montrer que la dynamique est fortement Feller. &tiuctibilite topologiquelf) peut
étre montee de la mamire suivante. On se donne une condition initigle 7, un temps- > 0
et une “cible”u; € H. On peut alors montrer que pour taut> 0, il existe une fonction lisse
F:[0,7] — H, telle que la solution(t) de I'équation

w=Au+u—ud+ F(t), u(0) = u; ,

satisfait||u(r) — us|| < e. On montre ceci “brutalement” en construisant explicitement la fonc-
tion /. On a ainsi construit pour chaque cible ugalrsation du bruit qui agne les solutions
arbitrairement prs de la cible en un temps danril est intuitivement clair que ceci est suffisant
pour avoir I'irreductibilite topologique. L&gali€ entre le support des probal@ktde transition

et I'ensemble atteignable du prebhe de confile asso@ aéte monté pour la prensgre fois en
dimension finie dans [SV72].

La proprété (c) decoule imnédiatement de la dissipati@itres forte de ce sysine. Le terme
—u® oblige les solutions rester relativement @s de l'origine et le termé\u les ©gularise,
fournissant la compadtchercke.

Il reste doné montrer la propéte (@), a savoir que la dynamique est fortement Feller. Nous
nous contenterons dans cette introducianontrer que Bquation (3.1) satisfait formellement
la condition de Wbrmander. Afin de simplifier les notations, nous nous restreignons au cas de
fonctions paires eteellesu(z) = u(—x) = u(z). Dans ce cas, les coefficients de Fouriemnde
satisfontu, = u_;, = u,. L' €quation (3.1) peut alorsétrire comme

dup = (1 — k*) uy, dt — Z UpUp Uy, dt + qi dwy, k. 0,m,neZ.
l+m+n=k

Le terme important dans cette expression est celui correspoadamonliréarie cubique. En
effet, on voit que ce terme est le seul qui couple lesdiffits modes de Fourier entre eux. Si
on interpete ce terme comme un champ de vecteurs (de dimension infinie), on gairel’
comme

Jo= Z UgUUn Op oy

Lm,n

ou 0, désigne I'oerateur de @rivation dans la direction,. Les champs de vecteurgaivant
le bruit sont donés pary, = g, Jx. Ces champs peuveaventuellemergtre nuls poufk| < k..
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Un calculélementaire donne alors

(96 [m: Lgns fol]] X Gutmgn D Ok

k=tl+m+tn

Comme tout nombre entrek, et +k, peut secrire comme une somme de trois nombres, on
voit que, du moins au niveau formel, trois commutateurs suffisent pour engendrer tout I'espace.

3.2 Gereralisation de la methode du couplage

Dans cette partie du @moire, qui fera I'object du Chapitre V, nougdatirons une magre de
construire un couplage:(v) tel que||u(t) — v(t)|| converge exponentiellement verdorsque

t — oo. Une telle construction implique alors in@diatement l'unicié de la mesure invari-
ante, ainsi que la convergence exponentielle des prolebdie transition vers cette mesure
invariante.

Notre construction diffre de celle dcritea la Section 2.3 par le fait que nous remplacons
la condition que les parties “instables’, et v, se rencontrent en un temps fini par celle,
plus faible, qu’elles convergent (exponentiellement) I'une vers l'autre. Cette condition per-
met d'étendre la rathode du couplaga certaines situationsuole bruit agit seulement de
mankere egerérée sur la partie instable deefjuation et a les nethodes de couplagé&drites
précedemment font @faut. Dans cette introduction, nous coisiths le modle donie par le
systéme déquations suivant:

duy = (a*uo +uy — ud)dt + dw ,

3.4
i = (a® — K*)up + up_y +upsr — vy, k=1,2,... (3.4)

Ici, a € R dénote une constante que I'on peut choisir arbitrairement et un mouvement
Brownien unidimensionnel. Nous choisissons de careidl’equation (3.4) dans I'espace de
Hilbert H = ¢2. On peut voir (3.4) comme un mékk simplie pour desquationsa cerivees
partielles du type Ginzburg-Landau. Remarquons encore que le.ongigit que sur le mode

0, alors que tous les modes jusgu’ = |a| sont linrkairement instables. &énmoins, chaque
mode est coupla ses voisins, ce qui a pour c@&aglence une transmission du braitous les
modes du sysime. C’est ce couplage que nous exploiterons par la suite pour notre construction.
Comme peccdemment, nousahotons paP;(u, - ) les probabilies de transition suk induites

par la solution de (3.4). Notré&sultat est alors le suivant.

Théoreme 4 L’'équation (3.4) pogsle une unique mesure invariante sur H et il existe des
constantes’, v > 0 telles que

IPeu, ) = puully < Ce™",

pour toutt > 0 et pour toutu € H.

La norme|| - ||, apparaissant dans ce#iquation est la norme duadela norme de Lipschitz,
c’esta-dire que

i = vl = sup{ [ G@) (= v)(dw) | IG@ < 1, |G@) = GO)| < flu =], Vu,v e ]
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Cette norme dfinit une topologie plus faible que la norme de la variation totale apparaissant
dans la section gedente. Un exemple qui permet de voir la &i#fince entre ces deux normes
est la suite de mesures dRidonree par

ﬂnzdl/n’ IUOO:(SO’

ou ¢, dénote la mesure de Dirac concé&grau point:. On a alors|u,, — pwl|, = 1/n, mais
[tn — poollrv = 2.

Nous donnons maintenant |ég principale permettant dé&wchontrer le TBoeme 4. Notre
technique consista construire un couplage:(v) pour (3.4) tel qud|u — v|| — 0 exponen-
tiellementa grand temps. Supposons gqu’un tel couplage existe et que I'on ait une estimation du
type

P([[u(t) — v(t)|| > Cre™*) < Coe™™". (3.5)
Par la éfinition de la norme de Lipschitz, on voit que I'estimation ci-dessus implique pour les
probabilies de transition que

|P:(uo, - ) — Pivo, )|, < Cre™ " 4+ 2C5e 7%

Les probabilies de transition pour deux conditions initiales &iéntes convergent donc 'une
vers l'autre. Si on a de plus une certaine unifoérdes constantes, et C; sur un ensemble
qui attire les solutions, on peut montrer que les prob&silite transitiof?,, (ug, - ) forment une
suite de Cauchy et posdent donc une limitg,.. Il est simple de &rifier queu, est une mesure
invariante.

Il reste donca construire le couplage en question. Soit.¢, W) I'espace de probabift
sous-jacend un processus de Wiener. i () est une variable ahtoirea valeurs dang& x
distriblée selon une mesuketelle que les marginales dresur chacune des deux copiesont
égalesaW, un couplage pour (3.4) est danpar les solutions de

dug = (a*uo + uy — ud)dt + dw ,
g, = (a® — K*)ug, + wp—1 + w1 — U
dvy = (a*vo + vy — vp) dt + d@

@k=(a2—k2)vk+vk-1+vk+1—v2, k=1,2,...
L'id ée principale dans la construction Rlest de consigrer I'eéquation

dug = (a*ug +uy — ud)dt + dw ,
Uy = (CL2 - k:Q)uk + Up—1 + Up41 — Ui )
dvy = (a*vg + vy — v) dt + G(u,v) dt + dw ,

op = (a® — K*)vg, + Up—1 + Vg1 — U k=1,2,...

(3.6)

avec poulG une fonction telle que les solutions de (3.6) satisfont une estimation du type (3.5).
Cetteéquation n’est pas encore un couplage pour (3.4), puisque le processus

5(t) = w(t) + /0 " Gluls), v(s)) ds
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n'est pas distribé& selon la mesure de Wiener. Il e@ammoins possible de construire un cou-
plage tel qu’il existe un temps @dtoirer ayant la prop@éte que le processus (v) satisfait
I’ équation (3.6) pour des temps> 7. On peutégalement trouver des estimations sur la taille
der.

Il ne reste donc plus g&’construire la fonctiordz. On consi@&re pour ceci le processus
donre parp = v — u. On a alors (si on&finit p_; = 0):

or = (@ — ) og + or1 + 01 — ox(up + upvp + v7) + Spo Glu, v) . (3.7)

On voit bien que, dice au terme erk?, il existe une valeuk telle que lequation ci-dessus est
stable pouf: > k. Sinous trouvons ué tel que les modes avéc< k tendent ver$, les autres
vont donc suivre automatiquement. La construction que nous utilisons ensuite pour tsdouver
est similairea une construction utilee dans [EPR99b] pour cobter une chine d'oscillateurs
coupks par ses ex@mitesa des eservoirs thermiques. Lésjuations (3.7) exhibent un couplage
par plus proches voisins. Comme ce couplage est @gardré on voit que, sil'on obtient d’'une
mankere ou d’'une autre le cordle surp;_,, on peuta travers ce couplage forcef a tendre
vers(0. Par le néme raisonnement, on peut obtenir le colrsurg; , si on a le conible sur
0j._,, etc. Ce raisonnement pektte poursuivi en descendant les modes jus@uiver au mode
0, sur lequel on a justement un bon cdhérvia la fonctionGG. On peut donc de cette mane
faire tendrep;, verso0.

Enfin, il est possible deamontrer, en regardant eetdil la construction ainsi obtenue, que
non seulemenp; tend vers), maiségalement tous les autres modes. CeceseHa é@émon-
stration du Tikoeme 4.

4 Conclusions et Perspectives

Dans ce travail, nous avon€grali® les néthodes du recouvrement et du couplage, afin de
pouvoir les appliquer dans des situations qui n'ont jusqu’alors pastq@etudées. Nous
avons fait la plupart de nos estimations sur I'exemple concretdedition de Ginzburg-Landau
stochastique, mais une partie désultats se @éralisenttgalemena d’autres situations (voir

les Exemplesa la fin du Chapitre V). Il reste en tous cas trois questions ouvertes qui nous
semblent intressantes:

e Quel estle nombre minimal de modes qu’il faut forcer pour gagquation de Ginzburg-
Landau stochastiqueé&elle ou complexe) sur un intervalle ne pads qu’une seule
mesure invariante?

e La suite de mesures invariantes pour (3.1) obtenue en faisant tendexs I'infini
pos®de-t-elle une limite?

e Est-ce que la mesure invariante powduation de Ginzburg-Landau en domaine infini
est unique si une bande défuences seulement est feegar le bruit?

Dans les deux cas, la partietérministe de Bquation peuétre remplaée par n'importe quelle
autreéquationa cérivées partielles comportant une certaine inst@il@domme par exemple
I’ équation de Navier-Stokes en deux dimensions).

La suite de ce travail (en anglais) est struetude la mamire suivante. Au Chapitre II, nous
consicerons lequation de Ginzburg-Landau stochastique sur la drégée et nous montrons
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gue I'on peut obtenir I'existence d’'une mesure invariant@ide des propétes analytiques de
ses solutions. Au Chapitre Ill, nous considns Iequation de Ginzburg-Landau en domaine
borré avec un bruit n'agissant que sur les hautegdences. Nous montrons que sa dynamique
est fortement Feller et topologiguementductible, ce qui implique I'uniot de sa mesure
invariante. Au Chapitre IV, nous montrons que la convergence vers cette mesure invariante
s’effectue de fagcon exponentielle, en utilisant lathode du recouvrement. Au Chapitre V en-
fin, nous utilisons la rathode du couplage pouedhontrer I'unicié de la mesure invariante dans
des situations &s cegererées al le bruit est de dimension finie et agit seulement indirectement
sur les modesé&terminants du sysine.

Les chapitres Il et Il sont des reproductions des articles [EHO1a] et [EHO1b] respective-
ment. Ces deux publications dgie réali€es en collaboration avec J.-P. Eckmann.






1. Invariant Measures for Stochastic PDE'’s
In Unbounded Domains

Abstract

We study stochastically forced semilinear parabolic PDE’s of the Ginzburg-Landau type. The
class of forcings considered are white noises in time and colored smooth noises in space. Exis-
tence of the dynamics in°t, as well as existence of an invariant measure are proven. We also
show that the solutions are with high probability analytic in a strip around the real axis and give
estimates on the width of that strip.

1 Introduction
We consider the stochastic partial differential equation (SPDE) given by

dug(t) = Augt) dt + (1 — Jue(t)ue(t) dt + QAW () ,
w0 =€, EeL™R).

In this equationd¥V(t) denotes the canonical cylindrical Wiener process on the Hilbert space
L%(R, dx), i.e.we have the formal expression

(SGL)

E(dW (s,x)dW(t,y)) = 0(s — t)d(x — y) ds dt .

Think for the moment ofu.(t) as a distribution on the real line. We will introduce later the
space of functions in which (SGL) makes sense. The syflaénotes a bounded operator of
the type@ f = 1 * (p2 f) wherep,, the Fourier transform af,, is some positivé€° function
andy, is some smooth function that decays sufficiently fast at infinity to be square-integrable.
In fact, we will assume for convenience that there are constants8 and3 > 0 such that

o)) < W o (e = Vi, (1.1)

The space in which we show the existence of the solutions,{R), the Banach space of
complex-valued uniformly continuous functions. The reason of this choice is that we want to
work in a translational invariant space which is big enough to contain the interesting part of
the dynamics of the deterministic part of the equatian,the three fixed point8 and+1, as

well as various kinds of fronts and waves. The meaning of the assumptionsanmd is the
following.

e The noise does not shake the solution too badly at infinity (in the space varjalifét
did, the solution would not stay in°t.
e The noise is smooth i (it is even analytic), so it will not lead to irregular functions in

x-space. This assumption is crucial for our existence theorem concerning the invariant
measure.
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For convenience, we write (SGL) as

dug(t) = (Lug(t) + Flue(t) dt + QAW (?),

1.2
L=A-1, (F)()=u(z)+ 1~ |u@)*)ulx). (-2

This is also to emphasize that our proofs apply in fact to a much larger class of SPDE’s of the
form (1.2). For example, all our results apply to the stochastically perturbed Swift-Hohenberg
equation

dug(t) = (1 — A ug(t) dt + (1 — |ug(t)[*)ug(t) dt + Q dW (1) ,

but one has to be more careful in the computations, since one does not know an explicit formula
for the kernel of the linear semigroup. It is also possible to replace the nonlinearity by some
slightly more complicated expressionf).

For any Banach spac®, a #-valued stochastic process(t) is called amild solutionof
(1.2) with initial conditioné, if it satisfies the associated integral equation

ue(t) = ¢ + /Ot eH ) P (ug(s)) ds + /Ot eH=0Q dw (s) , (1.3)

in the sense that every term defines a stochastic procegsam that the equality holds almost
surely with respect to the probability measure on the abstract probability space underlying the
Wiener process. The initial condition does not have to belong tprovidede™*¢ ¢ 2 for all
timest > 0.

To a Markovian solution, we can associate (under suitable condition&atistion semi-
groupP; defined on and into the set of bounded Borel functipns# — C by

(Pe)©) = | enIP(uelt) € di) (14)

Its dual semigrougP; is defined on and into the set of Borel probability measures % by

(PD) = [ Pluet) € T)v(de) (L5)

wherel is a #-Borel set. If the existence of the solutions is shown for initial conditions in a
larger Banach spac#’ in which Z is continuously embedde®; can be extended to a map
from the %8’-Borel probability measures into thg-Borel probability measures.

An invariant measurdor (1.2) is a probability measure a# which is a fixed point fofP;’.
If .7 is a weaker topology o4, we can under appropriate conditions extépidby (1.5) to
a mapping from the7 -Borel probability measures into themselves. In the case’qR), we
may for example consider a “weighted topolog¥, induced by some weighted norjfe - || .

If we takey,(z) = 1, itis known (we refer to [DPZ96] for details) that (1.2) possesses a mild
solutionin L?(R, o(zx) dx) for a weight functiorp that decays at infinity. Our choice f@f makes
it possible to work in flat spaces, since the noise is damped at infinity. In fact, we will show that,
for every initial conditionu, € L>*(R), (1.2) possesses a mild solutiondh(R), the space of
bounded uniformly continuous functions &1 This leads to slight technical difficulties since
neither L*°(R) nor C,(R) are separable Banach spaces, and thus standard existence theorems
do not apply.
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After proving the existence of the solutions, we will be concerned with their regularity. We
prove that with high probability the solutian(t) of (SGL) for a fixed time is analytic in a strip
around the real axis. We will also derive estimates on the width of that strip. These estimates
will finally allow to show the existence of an invariant measure Rj; provided we equip
C.(R) with a slightly weaker topology. The existence of an invariant measure is not a trivial
result since

a. The linear semigroup of (SGL) is not made of compact operatafs (R).

b. The deterministic equation is not strictly dissipative, in the sense that there is not a unique
fixed point that attracts every solution.

c. The deterministic equation is of the gradient type, but the ope¢atemot invertible, so
we can not make tha priori guess that the invariant measure is some Gibbs measure.

The results we found in the literature about the existence of invariant measures for infinite-
dimensional stochastic differential equations (sgg[JLM85, DPZ92a, DPZ96, BKL00a] and
references therein) usually assume that the converse of aittieeor c. holds. The main result

of this paper is the following.

Theorem 1.1 There exist slowly decaying weight functiansuch that the extension &f' to
the .7,-Borel probability measures is well-defined and admits a fixed point.

Remark 1.2 The hypotheses of this theorem have been made with the following future project
in mind. We hope to prove that the measure found in Theorem Lididggie The basic idea is
to apply the methods of [EPR99Db] to the context of SPDE’s to show unigueness of the measure
by the tools of control theory. In this context, it is interesting if the noise drives the system
only in the dissipative range, namely irfiaite interval of frequencies which need not contain
the unstable modes of the deterministic Ginzburg-Landau equation. In particular, such forces
do not have invertible covariances and hence methods such as those found in [DPZ96] do not
apply.

This is also the reason why the setting considered in this paper impeosefiave compact
support, although the extension to exponentially decaying functions would have been easy.

The next sections will be organized as follows. In Section 2, we give detailed bounds on the
stochastic convolutioni,e. on the evolution of the noise under the action of the semigroup
generated by.. In Section 3 we then prove the existence of a unique solution for (1.2) and
derive ana priori estimate on its amplitude. Section 4 is devoted to the study of the analyticity
properties of the solution. In Section 5, we finally show the existence of an invariant measure for
the dynamicsi.e. we prove Theorem 1.1 which will be restated as Theorem 5.4. The appendix
gives conditions under which one can prove the existence of a global strong solution to a class
of semilinear PDE’s in a Banach space.

1.1 Definitions and notations

Consider the setsz, of functions that are analytic and uniformly bounded in an open strip of
width 27 centered around the real axis. They are Banach spaces with respect to the norms

[flln.cc = sup [f(2)] -

z:|lmz|<n
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Fix T > 0. We define% as the Banach space of functiof@, x) witht € (0,7] andz € R
such that for fixed > 0, f(t,-) is analytic and bounded in the strfp = = + iy | [y| < V/1}.
We equip% with the norm

1A lle = sup [If( 2,00 -
te(0,71]

In the sequel we denote by- ||, the norm of (R, dz). For M a metric space ant¥ a
Banach space, the symh@Gj(M, ) (resp.C, (M, %)) stands for the Banach space of bounded
(uniformly) continuous functiond/ — % endowed with the usual sup norm. % = C, it
is usually suppressed in the notation. Moreover, the symibdenotes a constant which is
independent of the running parameters and which may change from one line to the other (even
inside the same equation).

The symbolZ(X) denotes the probability law of a random varialle The symboB(M, r)
denotes the open ball of radiusentered at the origin of a metric vector spdde

2 The Stochastic Convolution

This section is devoted to the detailed study of the properties of the stochastic process obtained
by letting the semigroup generated byact on the noise.

2.1 Basic properties

Let us denote by(¢, .7, P) the underlying probability space for the cylindrical Wiener process
dW, and byE the expectation ifi. We define the stochastic convolution

Wi(t,w) = /Ot eH9Q dW (s, w), weN. (2.1)

The argument will be suppressed during the major part of the discussion. For a discussion
on the definition of the stochastic integral in infinite-dimensional Banach spaces, we refer to
[DPZ92b]. Notice that since; has compact support, we can findg function ) such that
w(x) = 1 for z € suppp. We define) f = ¢ « f and fix a constank such that

suppp C suppy C {z € R||z| < R} . (2.2)
We have of cours€&(Q = (. An important consequence of this property is

Lemma 2.1 Fixn > 0 anda < 1/2. Then there exists a version bf; with a-Holder contin-
uous sample paths i,. Furthermore, for every” > 0, the mapping

W Q — Cy([0,T], <) ,

o W), (2.3)

is measurable with respect to the Boeefield generated by the strong topology on the space
Cb([07 T]a JZ{T])
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Remark 2.2 The meaning of the word “version” is that the process constructed here differs
from (2.1) only on a set d?-measurd). We will in the sequel not make any distinction between
both processes.

Proof of Lemma 2.1We first notice thatV;,(t) has am-Holder continuous version in%(R).
This is a consequence of the fact that the Hilbert-Schmidt normi{R)Lof exp(Lt)Q is bounded
by e7t||1||2|lp2]2- Since 2(R) is separable, the mapping

WL . Q — Cb([O,T], L2(R)) y
W = WL(‘,W) ’

is measurable [DPZ92b, Prop 3.17]. Sidcand() commute, we can write

Wit = | " QRMIQ AW (5, w) = OPW (1, w) (2.4)

where we used [DPZ96, Prop. 4.15] to commute the operator and the integral. We will show that
Q? defines a bounded continuous linear operator fréfR) into <7, The claim then follows
if we define the mapV; = Qg o W, where we denote b@?7 the operator constructed in an
obvious way fromQ? as a map fron€;,([0, 7], L*(R)) into Cy([0, T1, 7).

Notice first that if f € L2(R), we have by the Young inequalit9 f € L>(R) and the
estimate

1Qflloo < l1ll2l £1l2 (2.5)

holds. Take nowf € L*(R). SinceQ maps any measurable function onto an entire analytic
function,@ f(z) has a meaning for everyc C. We have for any € R

(@A) +in)] = | [ vl +in—y)f@)dy. (2.6)

By assumption, the Fourier transformfbelongs taC5°. We know that such functions enjoy
the property — see.g.[RS80] — that for eactV > 0 there exists a constabty such that

' (jNeRInI
+ <

where the constamk is defined in (2.2). We thus have the estimate

(@D +im] < 1fll [ 1t +in— )| dy
< O™

2.7)

and thus
1Q f o < Ce™M|| £l - (2.8)

Collecting (2.5) and (2.8) proves the claim. O



20 INVARIANT MEASURES INUNBOUNDED DOMAINS

Remark 2.3 As an evident corollary of the proof of the lemma, note thai(t) € D(L) for all
timest > 0 and that the mapping
Wy Q — Cy([0,T],D(L)),

2.9
wi— Wr(,w), (2:9)

has the same properties as the mappifbif we equipD(L) with the graph norm. In particular,
W, has almost surely-Holder continuous sample pathsi(L).

We will now give more precise bounds on the magnitude of the pradgssOur main tool
will be the so-called “factorization formula” which will allow to get uniform bounds over some
finite time interval.

2.2 Factorization of the stochastic convolution
We define, fow € (0,1/2),

Vi) = [ (= o) P HIQa(s),
(G0 (1) = /0 (= sy e M (s) ds

Notice that we can show by the same arguments as in Lemma 2.1 that the prpgg$das a
version which takes values i,. Thus, in particular the expressiof (¢, x) is a well-defined
complex-valued random variable. A corollary of the stochastic Fubini theorem (sometimes
referred to as the “factorization formula” [DPZ92b]) shows that

sinmd
T

WL(@t) =

(GaYis)(t) - (2.10)

Before we start to estimatgl’; (¢)|| .., we state without proof the following trivial consequence
of the Young inequality:

Lemma 2.4 Denote byg, the heat kernel and chooge> 1. Then there exists a constant
depending om such that
g % flloo < ct™ /P £, (2.11)

holds for everyf € LP(R).
We have, using (2.10), Lemma 2.4, and th@dr inequality,

t
HWL(t)HOO < C/O (t - 3)6_16_(t_8)||gt—s * YL,(S(S)HOO ds
ot
<C / (t — 5)° 11|y, (s)], ds
0

t i /g, [t 1/p
_ g)al6—1-1/(2p))
< C</o (t — s)? P ds) (/0 IYLs(s)II% ds) ,

whereq is chosen such that™! + ¢! = 1. It is easy to check that the first integral converges

Whe“ 3
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In that case, we have

t 3
W@l < 0 [ IVis@lpds,  v=pi—3. 2.13)

So it remains to estimate&’;, 5(t)||,-

2.3 Estimate on the proces37, 5(t)
This subsection is devoted to the proof of the following lemma.

Lemma 2.5 LetY}, 5 be as above and chooge> 2 andé € (0, 1/2). There exists a constant
depending om, p, 1 andyp, but independent afsuch thate || Y7, 5(1) (|5 < c.

Remember that the convolution of two decaying functions decays like the one that decays slower
at infinity:

Lemma 2.6 Let f and g be two positive even functions which are integrable and monotone
decreasing betwedhandoo. Then the estimate

(f x )@ < [f(/2] gl + g/ || 1
holds.

Proof. Assumexz > 0 (the caser < 0 can be treated in a similar way) and defihe =
(x/2,32/2). We can decompose the convolution as

(Fx )@ < [ 17— aoldy+ [ 15— dy
<lg(a/2) [ 1f@dy+ £/ [ loG)ldy
which proves the assertion. O

Proof of Lemma 2.5We use the formal expansion

dW (z,t) = i ej(z) dw;(t) ,

J=1

where thee; form an orthonormal basis of?(R, dz) (say the eigenfunctions of the harmonic
oscillator) and thew; are independent Wiener increments. We also denofe liye translation
operator (. f)(y) = f(y — z). We then have

t o0 2
E|YLs(t,2)]* = E‘/O >t — 8) e (g, % 1 x (p2 €))() dw;(s)
h 2
t o0
- /0 (t — 8)" 26209 (g % o1 % (92 ¢,))(2)[2 ds
j=1

t o0
— /0 (t — 5) e 29 S (o To(gies * 1), )| ds

j=1
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t
= [ s e g, o)l ds
An explicit computation shows the equality

02 Tulgs * 1)l = (93 * (95 * 1)) (@) -

Using Lemma 2.6, the fact that (x) < Cx{((z)~" for everyN, and the well-known inequality
lgs * ©1](z) < ||1]|, We get the estimate

e—xz/(lb's) 1

(0. % 01) < O =+ )

Using again Lemma 2.6 and (1.1), we get

efxz/(64s) 1

2 Tolga * 21113 < C( T <<x»1+26).

It is now an easy exercise to show that

supllies Tu(g + 1) < c(«; + L ).
Defining ' = min{1/2, 3}, and using(z) > 1, we have
EIYat, ) < O [ Cs e gg < Ollz) 1
SinceY, 5(¢, z) is a Gaussian random variable, this implies,for 2
EllYz (0| = / E|YL5(t )P da < C/R(E|YL,5(t,x)|2)p/2 dz

<C/ /2+6’ z<C.

This proves the assertion. O

(2.14)

As a corollary of Lemma 2.5, we have the following estimate on the prdéggs).

Corollary 2.7 For anyp > 2, there is a constanf’ > 0 such thatE||IV.(¢)|[%, < C for all
timest > 0.

Proof. Using again the equaliti¥’, (t) = QW.(t), we notice that it is enough to have an esti-
mate onE||1W.,(¢)[/5. This can be done by retracing the proof of Lemma 2.5 witeplaced by
0. O

We have now collected all the necessary tools to obtain the main result of this section.
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Theorem 2.8 For everye > 0, there are constant§’, R > 0 depending only on the choices of
©1, 2 ande such that the estimate

E|Wellr < Ce™ T2
holds. 0

Proof. The estimate
IWellr < Ce™T sup W) (2.15)
te(0,77]

holds as a consequence of Egs. (2.6) and (2.8). We thus need an estinj#te (Y., which
Is uniform on some time interval. This is achieved by combining Lemma 2.5 with Eq. (2.13).
Let us first choose a constant> 1/2, but very close td /2 and then a (big) constaptsuch
thatp > max{2, 3/(20)}. Since sup., ; [|Wx(t)|/~ is a positive random variable, we have

1/p

E( sup [We(0)]l) < C(E(SURcmlIWit)]oo)”)
te(0,77]

1/p
= C(E(sUReq W ®)]12))
T
< c(:m/O ElVzs(s)2ds) "
< OoTOP < o1/ (2.16)

The exponent — 1/(2p) can be brought arbitrarily close tg2. This, together with the previous
estimate (2.15), proves the claim. O

We have now the necessary tools to prove the existence of a unique solution to the SPDE (1.2).

3 Existence of the Solutions

Throughout this section, we denote B§the Banach spad€,(R) of bounded uniformly con-
tinuous complex-valued functions on the real line endowed with the norfa,. The reason

why we can not use a standard existence theorem isAhatnot separable. Nevertheless, the
outline of our proof is quite similar to the proofs one can find in [DPZ92b]. The technique is to
solve (1.2) pathwise and then to show that the result yields a well-defined stochastic process on
2 which is a mild solution to the considered problem. In order to prepare the existence proof
for solutions of (1.2), we study the dynamics of dheterministicequation

Xe(W, 1) = LX(W, t) + FOGE(W, 6) + W(D) . Xe(W,0) = €. (3.1)

In this equation¢ € L°°(R) is an arbitrary initial condition andl” € Cy([0,T], «7,) is an
arbitrary noise function witi1(0) = 0 andn > 0 fixed. For the moment, we choose an
arbitrary timeT" > 0 and study the solutions up to tiffé The reason why we study (3.1) is
that if X, is a solution of (3.1), thei;(t) = X,(¢) + W (¢) is a solution of

Ye(t) = LYe(t) + F(Ye@®) + W), Ye(0) =€,
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providedV : [0,7] — «, is a differentiable function. Because of the dissipativityFofwe
will show that (3.1) possesses a unique bounded and continuous solutiBrfon all times
t € (0,7]. Consider the map

Sg : C(b([Oa T]v %) - Cb((()?T]ﬂ@) )

that associates to every noise functidhand every initial conditiorf € L*°(R) the solution
of (3.1). (We do not show explicitly the value gfin the notations, since the m@" isin an
obvious sense independentpf We have the following result.

Lemma 3.1 The map(¢, W) +— SgT(W) is locally Lipschitz continuous in both arguments.
Furthermore, the estimates

18§ M < max{|[¢]loo, CA + W)}, (3.29)
IS¢ (W) = SEM)I < e"[l€ = Clloe (3.2b)

hold.

Proof. The proof relies on the results of Appendix A. As a first step, we verify that the assump-
tions of Theorem A.2 are satisfied witi(x) = F(x + W (¢)). Itis well-known [Lun95] that
Al is satisfied for the Laplacean and thus forUsing the easy-to-check inequality

[(a — b) + afalal* = bIb*)]| > |a —b|(1 +a

|al® + [b?

;)
which holds for any:, b € C anda > 0, it is also straightforward to check that the mapping
L + F; is k-quasi dissipative for all times with = 1 and thereforéA2 holds. AssumptioA3
can be checked in a similar way. To che®4, notice that by Cauchy’s integral representation
theorem,, C D(L), and soF; mapsD(L) into itself. Furthermore, it is easy to check the
inequality

10:0]1% < Cllvllollvlls . v e D). (3.3)

We leave it to the reader to verify, with the help of (3.3), tAdtis indeed satisfied. It is clear
by the continuity ofi¥’(-) thatA5 holds as well, so we are allowed to use Theorem A.2.

We will show that (3.2) holds for arbitrary initial conditionsI(L). To show that they also
hold for arbitrary initial conditions in &°(R), we can apply arguments similar to what is done
at the end of the proof of Theorem A.2.

Until the end of the proof, we will always omit the subscriptin the norms. Denote by
X (t) the solution of (3.1). Sinc& (t) is strongly differentiable by Theorem A.2, the left lower
Dini derivative D_|| X (t)|| satisfies by (A.2)

D_|[X@I < fim inf p=H (| X @) = | X() = RLX (1) = hRE(X D))
< —IXOI+ A+ Wl ,

where the last inequality is easily obtained by inspection, absorbing the linear instability into
the strongly dissipative term X (t)| X (t) + W (t)|?. The estimate (3.2a) follows immediately
from a standard theorem about differential inequalities [Wal64].

(3.4)
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Inequality (3.2b) is an immediate consequence of Theorem A.2.
It remains to show thaﬁg(W) is a locally Lipschitz continuous function é¥. We call

X (t) and X (¢) the solutions of (3.1) with noise functiofi andV’ respectively. We also denote
by £V and F} the corresponding nonlinearities. In a similar way as above, we obtain the
inequality

DX - KO < X0 — K@) + 1= P;V)(xa»u
@Y - EYE @)

2

The claim now follows from the estimate

I(EY — EN) @) < CIW = VII(L+ [|l]]* + [W]* + V")
and from thea priori estimate (3.2a) on the norms &f(t) and X (¢). O
Before we state the existence theorem, let us define the following.

Definition 3.2 A transition semigrouf®; on a Banach spac#® has thewveak Fellerproperty if
Pro € C,(PB) for everyp € C,(A).

Theorem 3.3 For every initial condition inL>°(R), the SPDE defined by (SGL) possesses a
unique continuous mild solution i for all times. The solution is Markoy, its transition
semigroup is well-defined and weak Feller and its sample paths are almost sukéiyder
continuous for every < 1/2.

Proof. The main work for the proof was done in Lemma 3.1. Recall the definition (2.3) of the
mapping¥/; that associates to every elementbé continuous noise function it;,. Sinces,
Is continuously embedded i, we candefinethe random variable

ugT : Q) — Cy((0,T1, £) ,
W (SET o WH(w) + W/(w),

for somen > 0 and somé’ > 0. This allows to define the stochastic process

ue(t) : Q@ — A,
w = (ug W)@

for someT" > t. Itis clear by the uniqueness of the solutions to the deterministic equation (3.1)
that this expression is well-definddg. does not depend on the particular choic&ott is also
independent of the choice gf SincelV; is measurable anﬂg is continuousy, is a well-
defined stochastic process with valuesAn It is immediate from the definitions 6/ andS{
that, is indeed a mild solution to (SGL). The Markov property follows from the construction
and the Markov property df’;.
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To show that the transition semigroup is well-defined, it suffices by Fubini’'s theorem to
show that the function

Pea(D) = Pluelt) € 1) = | xe(uelt. ) P(d)

is measurable as a function for every#-Borel setl” and everyt > 0. This is (again by Fu-
bini’'s theorem) an immediate consequence of the measurabiliiy;odnd the joint continuity
of SZ(W).

The weak Feller property is an immediate consequence of (3.2b), since

(PA)E) ~ (PO < [ lolue(t, ) = oluclt, )| Pld)

Now choose= > 0. Sincep € C,(%), there existsy > 0 such thatp(z) — ¢(y)| < ¢ for
|z — y|| < 6. It suffices to choosé close enough t@ such that|ug(t, w) — uc(t,w)| <
etl|€ — ¢|| < ¢ holds.

Thea-Holder continuity of the sample paths is a consequence of the strong differentiability
(and thus local Lipschitz continuity) of the solutions of (3.1) and of the almostsuélder
continuity of the sample paths of . O

We now show that the solution of (1.2) not only existsGf(R) but also stays bounded in
probability. In fact we have

Lemma 3.4 Letu.(t) be the solution of (1.2) constructed above witk L*°(R). There exist
atimeT™ > 0 depending orf and a constant' > 0 such thatE||u(t)||.. < C for every time
t>1T.

Proof. From (3.4), we obtain the estimate

t
) = Wel®lloe < e lello+C [ I+ [Wils)]) ds
This yields immediately

SUPE||u(t)|loc < €™ [[€]loc + C SUPE(L + [Wi(8)]loo + [WL($)]%) -
t>T s>0
The claim follows now easily from Corollary 2.7. O

4 Analyticity of the Solutions

Our first step towards the existence proof for an invariant measure consists in proving that the
solution of (SGL) constructed in Section 3 lies for all times in some suitable space of analytic
functions. More precisely, we show that there is a (small) tifnsuch that the solution of
(SGL) up to timeT" belongs to#;. (Recall the definition of4; given in Subsection 1.1.) The
proof is inspired by that of [Col94] for the deterministic case, making use of the estimates of
the preceding sections, in particular of Theorem 2.8.
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We split the evolution into a linear part and the remaining nonlinearity. Recall the definitions
L=A—-1 and F(u)(z) = u(z)(2 — |u(@)*) .

Throughout this section, we assume thél is a stochastic process solving (SGL) in the mild
sensej.e. there exists @ € L*°(R) such thatu(t) satisfies (1.3). Such a process exists and is
unique (givert) by Theorem 3.3.

For given functiong € L>(R) andh € %, we define the mapA,;, : Br — % as

(Mgn(D)E) = h() + g+ /0 e F(f(t — 7)) dr (4.)
= h(t) + (Lg)t) + NV )(@) -

Until the end of this proof, we writ@ - || instead off| - ||r. It is possible to show — see [Col94]
—thatM, ;, is always well-defined o8, and that there are constants k., ks such that

I£gll < krllglloo
INFI < kTP

[Mgnfi = Monfell < ksTQ+ Il + 1LD°0A — foll -

We now show thati(t) € 7, with high probability for somey > 0. The precise statement of
the result is

Theorem 4.1 For anye > 0 there are constants, 7', C' > 0 such thatP(u(t) € B(a,,C)) >
1 — ¢ for every timef > T.

Proof. We fix T bigger than the valu&* we found in Lemma 3.4, sa§ = 7* + 1. We also fix
some timel” < 1 to be chosen later and we choose an arbitrary timel". We show that with
high probability, the solutiom(t — 7" + -) belongs to%;. To begin, we take = u(t — T') and,
for s > 0, we define

t—T+s
h(s) = / H=T+5-9) () W/ (o) .
t—T

Since the Wiener increments are identically distributed independent random variables, itis clear
that Z(h(s)) = Z(W(s)). In particular, Theorem 2.8 ensures the existence of a conStant
such tha€||n| < C,. By Lemma 3.4, there exists another constansuch thak||g||.. < Cb.

Since the solution is Markoviag,andh are independent random variables and we have

20, 204 205 204
P(llglle < =2 and |k >:P o < Z2VP(|In)] < =2
(lglle < =22 and 1l < =) = P(lglle < =2)P(Ill < =)

>(1—¢/2>1—¢.
From now on we assume that the above event is satisfied. Thus there is a cOpstati(1 /<)
such that
[Mgnfll < Cs+ kT fIP -
If we impose nowl” < 1/(8k,C3), we see thatM, , maps the ball of radiusC; centered ab
into itself. If we also impose the condition
1

Te
= Tl + 4C5)2
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we see thatM, ; is a contraction on that ball. This, together with the uniqueness of the so-
lutions of (SGL), proves the claim. It moreover shows that the widd analyticity behaves
asymptotically liken =~ O(g). O

The above theorem tells us the probability for the solution to be analytic in a strip at a fixed
time. Another property of interest is the behavior of the individual sample paths. We will show
that any given sample path is always analytic with probabilityRecall that# denotes the
o-field of the probability space underlying the cylindrical Wiener process.

Proposition 4.2 There is an event € . with P(I') = 1 such that for every € L*(R), every
w € T', and every positive time > 0, there exists a strictly positive valugt) > 0 such that
ue(t,w) € o,

Proof. Define for each integet the sefl’,, as
[, ={w e Q|Wi(,w) € C([0,n], #,)} .

We haveP(',,) = 1 for all n by Lemma 2.1. By-completenesd, = (,., [, belongs ta#
andP(I') = 1. We claim thafl" is the right event.

By the construction of’, the sample paths,(-,w) andW(-,w) are continuous and thus
bounded on every finite time interval. Furthermolé,(t,w) € 7, for every time and every
positiven. The claim now follows easily from the proof of Theorem 4.1. O

5 Existence of an Invariant Measure

We can now turn to the proof of Theorem 1.1. We first define the set of weight fundtioas
the set of all functiong : R — R which satisfy

a. The functiong(x) is bounded, two times continuously differentiable and strictly positive.
b. For everys > 0 there exists:. > 0 such thato(z)| < ¢ if |z| > ..
c. There exist constants andc, such that

0z 0()
o(z)

d20(x)
o(x)

‘ < ¢ and

[<e, (5.1)

forall z € R.

Remark 5.1 The meaning of the expression “slowly decaying” used in Theorem 1.1 becomes
clear from the following statement, the verification of which we leave to the readeevieoy
strictly positive decreasing sequens, }°° , satisfying lim,_.., z,, = 0 and such that,, /x,,.;
remains bounded, it is possible to construct a functian % such thato(n) = x| for every

n € Z. In particular,z,, may decay as slowly as/log(log(...log(C + n)...)), but is not
allowed to decay faster than exponentially.

For everyp € 7, we define the weighted norm

1Flle = llefllso -
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We can now consider the topological vector spaggewhich is equal as a set & = C,(R),
but endowed with the (slightly weaker) topology induced by the niprri,. The space?s, is a
metric space, but it is neither complete nor separable. Since the topologyisfweaker than
that of the original space?, every %,-Borel set is also @-Borel set and every probability
measure orZ4 can be restricted to a probability measure . Let us show that we can
define consistently a transition semigrdBp, acting on and into the set 6#,-Borel probability
measures. We have

Proposition 5.2 For everyp € #/, the transition semigrouf®; associated to (SGL) can be
extended to a transition semigro@j , such that (1.5) holds for everf,-Borel setl". Further-
more, the transition semigroup;, is weak Feller.

In order to prove this proposition, we will show the Lipschitz continuous dependence of the
solutions on the initial conditions in the new topology. For this, we need (see Appendix A for
the definition of a dissipative mapping in a Banach space):

Lemma 5.3 The operatorA is quasi dissipative with respect to the nofm||,.

Proof. We have the equality
A \Y Vo2
o = Aow) = = (ou) +2° 2V (06) ~ 2| %[ (ou)

The claim follows from (5.1) and the fact thAtandV are dissipative operators with respect to
I {loo- O

Proof of Proposition 5.2.Using Lemma 5.3, it is easy to check that the operater F; is, for
all times and for & € R, x-quasi dissipative with respect to the nofim||,. This yields as in
Lemma 3.1 the estimate

1S§ (W) = Sy, < e ls —ll, -

Using this estimate, we can retrace the arguments exposed in the proof of Theorem 3.3 to show
thatP;, is well-defined and weak Feller. |

This construction is reminiscent of what was done in [MS95a, FLS96] to construct an attractor
for the deterministic case. They also introduce a weighted topology¢R).to overcome the

fact that the attractor of the deterministic Ginzburg-Landau equation is not compact. Our result
is the following.

Theorem 5.4 For everyp € #/, there exists &8 ,-Borel probability measurg:, which is in-
variant for the transition semigroup; ,.

The proof follows from a standard tightness argument. The main point is to notice that the
unit ball of <7, is compact in, for any weight functiorp € . We formulate this as a lemma.

Lemma 5.5 The unit ball of<7, is a compact subset of, for everyp € 7.
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Proof. Since %, is a metric space, compact sets coincide with sequentially compact sets, see
[K06t83]. We use the latter characterization. Choose a sequEneg{ f,,}>° , of functions in

<, With || f,[ln.cc < 1 for all n. It is a standard theorem of complex analysis [Die68] that if

D c Cis open andF is a family of analytic functions uniformly bounded @n then for every
compact domaink’ C D there is a subsequence &t that converges uniformly oi” to an
analytic limit.

We define the subsequencgs inductively by the following construction. First we choose
JF_1 = F. Then we consider the compact sBts= [—n, n] and we definef,, as a subsequence
of F,,_; that converges unlformly of,,. Call fn the resulting limit function orD,,. We now
define a global limit functlorfOO by foo(q:) fu(z) if z € D,. This procedure is well-defined
since dlfferentfn must by construction coincide on the intersection of their domains.

It remains now to exhibit a subsequencefothat converges td.. in the topology of%,.

For everyn > 1, choosey, € F, such thatg,(z) — f.(2)| < 1/nfor z € D,. Theg, form a
subsequence of. We have moreover

llelle

1gn = foollo < llgn = Fvllo + I1fw = Foollo < +4|SUIo |o(@)] -

By hypotheses. andb. on g, this expression tends tbas NV tends tocc. O

Remark 5.6 By the compatibility of the various topologies with the linear structures, every
bounded closed subset.of, is compact as a subset #,.

Proof of Theorem 5.4We choose an initial conditiof € L*>°(R) and consider the family of
2,-Borel probability measures given by

1t
5 [ Pieoar.

Fix now an arbitrary: > 0. By Theorem 4.1 there exigt C,7" > 0 such that,(B(<,, C)) >

1 — ¢ for everyt > T. SinceB(<,, C) is compact inZ, by Lemma 5.5, the familyi; }+~r is

tight and thus contains a weakly convergent subsequence by Prohorov’s theorem. Dgnote by
the limit measure. Remember that a Borel probability measure on a metricgpasceniquely
determined by its values aft, (1) [Bil68]. The weak Feller property op; , is thus sufficient

to retrace the proof of the Krylov-Bogoluboff existence theorem [BK37, DPZ96], which states
thaty, is invariant forp; ,. O

A Dissipative Maps

This appendix will first give a short caracterization of dissipative maps in Banach spaces. We
will then prove a global existence theorem for the solutions of non-autonomous semilinear
PDE'’s with a dissipative nonlinearity.

Definition A.1 Given a Banach spac® and a mapF' : D(F) C £ — %, one says [DPZ92b]
that F' is dissipativef

lz =yl < llz —y —a(F(z) - FW))I (A.1)
holds for everyr, y € D(F) and everyr > 0. If there exists & € R such thatr — F(x) — kz
Is dissipative, we say thdt is x-quasi dissipative (or quasi dissipative for short).
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In the following,u : (0, c0) — £ denotes a differentiable map. The functipr(-)|| is of course
continuous and its left-handed lower Dini derivative satisfies the inequality

D_[u(t)]| = lim inf [l — !LU(t — )|
(@ — [luld) — ha@)| | [Jul — k) — u(t) + b))
< timjor (F . h |
_timing @I = Jfu(®) — ha@)] -
h—0+ h

This estimate allows to get easily very useful estimates on the norm of the solutions of dissipa-
tive differential equations. For exampleyift) = F(u(t)) holds for all times and is k-quasi
dissipative, then the estimate

lu@Il < ™[ Ju)I] = [FO)I | + [ F(O)l] (A.3)

holds as a consequence of a standard theorem about differential inequalities [Wal64].
We will now use standard techniques to prove a global existence theorem for the Cauchy
problem '
Xe(t) = LXe(t) + Fu(Xe(t) . Xe(0) =€, (A.4)

and the associated integral equation
t
Xe(t) = eMe + / LI (X (s)) ds (A.5)
0

in a Banach spac#. We donotrequire that the domain df be dense in4. Let us denote by
D(L) the Banach space obtained by closing the domaih if 2. Since, by assumptioAl
below, L is chosen to be closed, we can eqlifi) with the graph normi|z||; = ||z| + || Lx]|
to obtain a Banach space. Our assumptiong amd F; will be the following.

Al. The operatoll is sectorial in the sense that its resolvent set contains the complement of
a sector in the complex plane and that its resolvent satisfies the usual bounds [Lun95,
Def 2.0.1].

This assumption implies [Lun95] thatgenerates an analytic semigrabit) which is strongly
continuous orD(L) and mapsZ into D(L*) for anyk > 0. Furthermore, a bound of the form

S]] < MeS* holds. We will assume without loss of generality thdt < 1 andQ = 0.

The latter assumption can be made since a constant can always be added to the nonlinear part.
The former assumption is only made for convenience to simplify the notations. All the results
also hold forM > 1. Another useful property of(¢) is that there exists a constansuch that
1S@)E||L < et™Y|€]| for € € # andt > 0.

A2. There exist a positive timé and a real constantsuch that the mapping— Lz + F;(x)
is k-quasi dissipative for all timese [0, T].

This assumption will ensure the existence of the solutions up to theZimehich may be
infinite.
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A3. The functionF; is everywhere defined and there exist continuous increasing functions
a,a : Ry — R, such that

[F:@)] < a(ll=]]) ,
[1Fi(x) = E)ll < [l = yll - all=l +[lyl)) ,

holds for everyr, y € % and for everyt € [0, T7.

(A.6)

A4. The mapF; mapsD(L) into D(L) for all times and there exist continuous at most poly-
nomially growing function$,b : R, — R, such that

IE@) e < b(lelle),
[1E(z) = Bl < llz = ylle - bzl + llylle)

holds for everyr, y € D(L) and for everyt € [0, T1.

(A.7)

A5. The mapping — F;(x) is continuous as a mapping,[I'] — % for everyx € %, and as
a mapping (), 71 — D(L) for everyxz € D(L).

These assumptions allow us to show the existence of the solutions of (A.4) in the mild sense for
any initial condition¢ € % and in the strict sense f@r € D(L). Furthermore, we show that

for any initial conditioné € 4, the solution lies ifD(L) after an infinitesimal amount of time.
Similar results can be found in the literature (geg [Lun95, Hen81] and references therein),

but with slightly different assumptions. The present result has by no means the pretention to
generality but is tailored to fit our needs. Since the proof is not excessively long, we give it here
for the sake of completeness.

Theorem A.2 AssumeA1-A5 hold and choosé € . Then there exists a unique function
X¢ : [0,T] — % solving (A.5) fort € [0, T]. The solutions satisfiyX,(t)— X, (t)|| < e™||{—n|
for all times. Furthermoret — X,(t) is differentiable fort > 0, X((t) € D(L) and its
derivative satisfies (A.4).

Proof. Assume first that the initial conditiohbelongs tdD(L). We denote by%;, ;- the Banach
spaceC'([0,T], D(L)) with the usual sup norm. We show the local existence of a classical
solution to (A.4) in%, 1 by a standard contraction argument. Chodse> 0 and define the
map./\/lg : @L,To — '%LTO by

t
(Mef)(O) = SO+ [ St = IF(F($)) ds
Itis clear byAl, A3, A4 andAS that M, is well-defined and that the bounds

[IMefIl < lIElle + Tob([ £11) (A.8a)
[Mef = Megll < Tollf = gll - b(([f1] + [lgl]) , (A.8D)
[Mef = McfIl < [I1€ =<l (A.8¢)
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hold. It is clearly enough to tak&, small enough, for example

0ol
To < mind o 6(4||s||L)} ’ (A-9)

to find a contraction in the balB(%,, 1,,, 2||£]|1). Thus.M, possesses a unique fixed paitt
in %, 1,- By [Lun95, Lem. 4.1.6] X, is strongly differentiable 4 and its derivative satisfies
(A.4).

Using (A.2) andA2, we see immediately that for ay( € D(L) andt > 0 such that the
strong solutionsX, and X, exist up to timet, the estimates

IX@I < MlIgll = a©)]e™ + a(0) ,

[ Xc(t) — Xe@)] < e (A.10)

hold. The global existence of the solution now follows by iterating the above arguments, using
(A.10) to ensure the non-explosion of the solutions. We leave it to the reader to verify that one
can indeed continue the solutions up to the time

We next now show that for any initial conditighe 4, the solution of (A.5) exists locally
and lies inD(L) for positive times. We defind1, as above, but replace the spagg 1, by the
larger space?;, 1, given by the measurable functioffis (0, 7y] — D(L) with finite norm

Il =sup [[tf@Ilz+ sup [[f&)] -
te(0,70] te(0,T0]

We first show thaiM, is well-defined on@LﬁTO. Choosef € @L,TO. It is easy to check that,
by A3, (M) < |7l + Toa(]| £]]). By A4, we can choose such thab andb grow slower
than (L + x)". We also choose an expone¥it> n and choos€; < 1. We have, by the remark
following A1, the estimate

UMD, < I1500els + [ s - RG], ds
+/ HtS(t—s)Fs(f(s))H ds
<del+ [

< cllg]| + Cut n@a(ll 1) + CotV (1 + |||f|||)

s @hds+ [ el ds

A similar estimate holds foff M, f — M.g||. SinceN > n, there exists a functiog such that
estimates of the type

IMefI < VTox(IFl) and IMcf = Megll < y/Tollf = g7l + llgl)

hold. It follows that7; can be chosen sufficiently small to make, a contraction on some ball
of %,.1,, and so the fixed point of; takes its values iD(L).

In order to complete the proof of the theorem, it remains to show that (A.10) holds for
arbitrary intial conditions. We again consider the same mappifigbut this time on the space
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Cy((0,Th], ). 1t is straightforward to check, using the assumptions, that bounds similar to
(A.8), but with|| - ||, replaced by| - || andb, b replaced by, @ hold. We notice that, by (A.8a),

we can, for arbitrary > 0, choosej so small that|u, ()| < (1 + ¢)||n||. Sinceu(d) € D(L),

this gives the estimatiu, (t)|| < |(1 + &)||n] — a(0)[e"*=9 + a(0), holding for every: > 0. By
using (A.8b) and a similar argument, we can show tha(t) — us(t)|| < e*¢=9(1 +¢)||n — ¢||

holds and thus (A.10) is true far, £ € A. 0
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lll.  Uniqgueness of the Invariant Measure for a
Stochastic PDE Driven by Degenerate Noise

Abstract

We consider the stochastic Ginzburg-Landau equation in a bounded domain. We assume the
stochastic forcing acts only on high spatial frequencies. The low-lying frequencies are then only
connected to this forcing through the non-linear (cubic) term of the Ginzburg-Landau equation.
Under these assumptions, we show that the stochastic PDEum&geeinvariant measure. The
techniques of proof combine a controllability argument for the low-lying frequencies with an
infinite dimensional version of the Malliavin calculus to show positivity and regularity of the
invariant measure. This then implies the uniqueness of that measure.

1 Introduction

In this paper, we study a stochastic variant of the Ginzburg-Landau equation on a finite domain
with periodic boundary conditions. The deterministic equation is

w=Au+u—u®, u0)=u?eH, (1.1)

whereH is the real Hilbert spacwge,([—w, 7)), i.e, the closure of the space of smooth periodic
functionsu : [—m, 7] — R equipped with the norm

Jal? = [ (@) + | @) de

(The restriction to the intervaHm, 7] is irrelevant since other lengths of intervals can be ob-
tained by scaling space, time and amplituda (1.1).) While we work exclusively with the real
Ginzburg-Landau equation (1.1) our methods generalize immediately to the complex Ginzburg-
Landau equation

u = (14ia)Au+u — (1 +ib)|ul*v, a,b€R, (1.2)

which has a more interesting dynamics than (1.1). But the notational details are slightly more
involved because of the complex valuesuadnd so we stick with (1.1).

While a lot is known about existence and regularity of solutions of (1.1) or (1.2), only
very little information has been obtained about the attractor of such systems, and in particular,
nothing seems to be known about invariant measures on the attractor.

On the other hand, when (1.1) is replaced by a stochastic differential equation, more can be
said about the invariant measure, see [DPZ96] and references therein. Since the problem (1.1)
involves only functions with periodic boundary conditions, it can be rewritten in terms of the
Fourier series fot:

. 1 ™ .
u(z,t) = Zemzuk(t), up = —/ e~ *u(z) dz .
kez 2m J—x
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We call £ the momentay,, the modes, and, sinedz, t) is real we must always have,(t) =
u_r(t), wherez is the complex conjugate af With these notations (1.1) takes the form

U, = (1=K )up — D U Uk Uy
ki1+ko+ks=k

for all k¥ € Z and the initial condition satisfie§1 + |k[)ux(0)} € ¢2. In the sequel, we will
use the symboH indifferently for the space’\/ger([—w, 7]) and for its counterpart in Fourier
space. In the earlier literature on uniqueness of the invariant measure for stochastic differential
equations, see the recent review [MS95a], the authors are mostly interested in systems where
each of theu,, is forced by some external noise term. The main aim of our work is to study
forcing by noise whiclacts only on the high-frequency paftu, namely on they, with |k| > k.,
for some finitek, € N. The low-frequency amplitudes, with |k| < k. are then onlyndirectly
forced through the noise, namely through the nonlinear coupling of the modes. In this respect,
our approach is reminiscent of the work done on thermally driven chains in [EPR99a, EPR99D,
EHO0O0], where the chains were only stochastically driven at the ends.

In the context of our problem, thexistenceof an invariant measure is a classical result for
the noise we consider [DPZ96], and the main novelty of our paper is a praofigiienessf
that measure. To prove uniqueness we begin by proving controllability of the equatqris,
show that the high-frequency noise together with non-linear coupling effectively drives the low-
frequency modes. Using this, we then use Malliavin calculus in infinite dimensions, to show
regularity of the transition probabilities. This then implies uniqueness of the invariant measure.

We will study the system of equations

duy = —k2uy dt + (uy, — W) dt + M dwi(t) , (1.3)
with v € H. The above equations hold fére Z, and it is always understood that
W= D Uk UyUp, , (1.4)

k1+ko+kg=k
kq,kg,k3€Z

with v_, = . To avoid inessential notational problems we will work with even periodic
functions, so that, = u_;, € R. We will work with the basis

ex(r) = \/ﬁcos@x) . (1.5)
Note that this basis is orthonormal w.r.t. the scalar produ@{ itut thewu, are actually given
by u, = (4n(1 + k?))~"/%(u, ;). (We choose this to make the cubic term (1.4) look simple.)
The noise is supposed to act only on the high frequencies, but there we need it to be strong
enough in the following way. Let, = k% + 1. Then we require that there exist constants
c1, co > 0 such that foik > k.,

g <q<oa”,  a>2, a—1/8<f<a. (1.6)

These conditions imply

YA+ KPP < o0,
k=0
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supk ¢t < 00
k> k.

We formulate the problem in a more general setting: L@t) be a polynomial of odd degree
with negative leading coefficient. Let be the operator of multiplication by + 42 and letQ
be the operator of multiplication by,. Then (1.3) is of the form

dd' = — AP dt + F(D) dt + QdW(¢t) (1.7)

wheredW (t) = 32, exdwy(t) is the cylindrical Wiener process dr with the w, mutually
independent real Brownian motiohd/Ne defined!(¢) as the solution of (1.7) with initial con-
dition ®°(¢) = £. Clearly, the conditions oy can be formulated as

| A*73/8Q) s < o0, (1.8a)
q, 'k~ ** is bounded fok > k. , (1.8b)

where || - ||us is the Hilbert-Schmidt norm ofit. Note that for eactk, (1.3) is obtained by
multiplying (1.7) by ¢ (1 + k2))~1/2(- e).

Important Remark. The crucial aspect of our conditions is the possibility of choosging 0

for all k < k., i.e, the noise drives only the high frequencies. But we also allow any afithe
with k& < k, to be different from 0, which corresponds to long wavelength forcing. Furthermore,
as we are allowingy to be arbitrarily large, this means that the forcing at high frequencies has
an amplitude which can decay like any power. The point of this paper is to show that these
conditions are sufficient to ensure the existence of a unique invariant measure for (1.7).

Theorem 1.1 The process (1.7) has a unique invariant Borel measurg{on

There are two main steps in the proof of Theorem 1.1. First, the nature of the nonlinearity
F implies that the modes with > £, couple in such a way to those with< k. as to allow
controllability. Intuitively, this means that any point in phase space can be reached to arbitrary
precision in any given time, by a suitable choice of the high-frequency controls.

Second, verifying a Brmander-like condition, we show that a version of the Malliavin
calculus can be implemented in our infinite-dimensional context. This will be the hard part of
our study, and the main result of that part is a proof that the strong Feller property holds. This
means that for any measurable functior B,(H), the function

(P'e)(©) = E((p o)) (1.9)

is continuous® We show this by proving that a cutoff version of (1.7) (modifying the dynamics
at large amplitudes by a parametgmakesP;  a differentiablemap.

The interest in such highly degenerate stochastic PDE'’s is related to questions in hydrody-
namics where one would ask how “energy” is transferred from high to low frequency modes,

LIt is convenient to have, in the case of (1.3)= 1 — A and F'(u) = 2u — u? rather thanA = —1 — A and
F(u) = —ud.
2Throughout the papeE denotes expectation afidenotes probability for the random variables.
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and vice versa when only some of the modes are driven. This could then shed some light on the
entropy-enstrophy problem in the (driven) Navier-Stokes equation.

To end this introduction, we will try to compare the results of our paper to current work
of others. These groups consider th® Navier Stokes equation without deterministic exter-
nal forces, also in bounded domains. In these equations, any initial condition eventually con-
verges to zero, as long as there is no stochastic forcing. First there is earlier work by Flandoli-
Maslowski [FM95] dealing with noise whose amplitude is bounded beloykpy. In the work
of Bricmont, Kupiainen and Lefevere [BKLOOc, BKLOOa], the stochastic forcing acts on modes
with low &, and they get uniqueness of the invariant measure and analyticity, with probability
1. Furthermore, they obtain exponential convergence to the stationary measure. In the work
of Kuksin and Shirikyan [KS00] the bounded noise is quite general, acts on low-lying Fourier
modes, and acts at definite times with "noise-less” intervals in-between. Again, the invariant
measure is unique. It is supported @y functions, is mixing and has a Gibbs property. In the
work of [EMSO01], a result similar to [BKL0Oa] is shown.

The main difference between those results and the present paper is our control of a situation
which is already unstable at the deterministic level. Thus, in this sense, it comes closer to a
description of a deterministically turbulent fluid.§, obtained by an external force). On the
other hand, in our work, we need to actually force all high spatial frequencies. Perhaps, this
could be eliminated by a combination with ideas from the papers above.

2 Some Preliminaries on the Dynamics

Here, we summarize some facts about deterministic and stochastic GL equations from the liter-
ature which we need to get started.
We will consider the dynamics on the following space:

Definition 2.1 We defineH as the subspace of even functions/u’jeg([—w, 7]). The norm on
H will be denoted by| - ||, and the scalar product iy, -) .

We consider first the deterministic equation
t=Au+u—u®, u0)=u?eH, (2.2)

Due to its dissipative character the solutions are, for positive times, analytic in a strip around

the real axis. More precisely, denote |py|| ., the norm
[fller, = sup [f(2)] ,
[imz|<n

and by.«7, the corresponding Banach space of analytic functions. Then the following result
holds.

Lemma 2.2 For every initial valueu® € H, there exist a tim@ and a constant’' such that
for 0 < ¢t < T, the solutionu(t, u”) of (2.1) belongs te7, and satisfiegju(t, u®)||, , < C.

Proof. The statement is proven in [Col94] for the case of the infinite line. Since the periodic
functions form an invariant subspace under the evolution, the result applies to our casel
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We next collect some useful results for the stochastic equation (1.7):

Proposition 2.3 For everyt > 0 and everyp > 1 the solution of (1.7) with initial condition
dO(&) = £ € 'H exists inH up to timet. It defines by (1.9) a Markovian transition semigroup
on’H. One has the bound

E( sup @) < Cup(L+ 161"

Furthermore, the process (1.7) has an invariant measure.

These results are well-known and in Section 8.6 we sketch where to find them in the literature.

3 Controllability

In this section we show the “approximate controllability” of (1.3). The control problem under
consideration is _
t=Au+u—u+Qf@), u(0) =u® e 1, (3.2)

wheref is the control. Using Fourier series’ and the hypotheseQ omwe see that by choosing
fr = 0for |k| < k., (3.1) can be brought to the form

Rutui— Y gt + O

Uy = l+m+n=k Vv 4m (1 + k2) (32)
—I{JQ'LLk + up — Z UpUm U, |k| < k* ’
l+m+n=k

with {u,} € H andt — {fi(t)} € L>=([0, 7], H). We will refer in the sequel t§u; } <k, as
thelow-frequency modesnd to{us } x>« as thehigh-frequency mode$Ve also introduce the
projectorsll, andIly which project onto the low (resp. high) frequency modes. Ketand
‘Hu denote the ranges of, andIly respectively. Clearly, is finite dimensional, wheredg
Is a separable Hilbert space.

The main result of this section is approximate controllability in the following sense:

Theorem 3.1 For every timer > 0 the following is true: For every®, «® ¢  and every: >
0, there exists a controf € L>([0, 7], H) such that the solution(t) of (3.1) withu(0) = u®
satisfieg|u(r) — u?| <.

Proof. The construction of the control proceeds in 4 different phases, of which the third is the
actual controlling of the low-frequency part by the high-frequency controls. In the construction,
we will encounter a time (R, ") which depends on the nori of «® and some precisios.

Given this function, we split the given timeast = 3% | 7;, with 7, < 7(||u®]|, ¢/2) and all

7, > 0. We will use the cumulated times = Z{Zl Ti.

Step 1. In this step we choosg = 0, and we define™ = w(t,), wheret — u(t) is the solution
of (3.1) with initial conditionu(0) = «®. Since there is no control, we really have (2.1) and
hence, by Lemma 2.2, we see thél € <, for somen > 0.



40 UNIQUENESS OF THEINVARIANT MEASURE

Step 2. We will construct a smooth contrgl : [¢;,¢,] — H such that? = w(t,) satisfies:
HHU(Q) =0.

In other words, in this step, we drive the high-frequency paft tdo constructf, we choose
a C> function ¢ : [t1,t3] — R, interpolating between and 0 with vanishing derivatives
at the ends. Definey(t) = o(t)yu for ¢t € [t1,t5]. This will be the evolution of the high-
frequency part. We next define the low-frequency part u (t) as the solution of the ordinary
differential equation

a. = Aup +up — I ((ug + up)?)

with w (¢1) = H u®. We then set(t) = u (t) ® un(t) and substitute into (3.1) which we need
to solve for the controd) f(¢) for t € [t1, t5].

Sinceuy (t) & un(t) as constructed above is.if, and since&) f = & — Au — u + u*, andA
mapse, to <7, » we conclude thaf) f € 7, ». By construction, the componentsof () decay
polynomially with & and do not vanish fok > k.. ThereforeQ~! is a bounded operator from
<y 5 N Hy to Hy. Thus, we can solve fof in this step.

Step 3. As mentioned before, this step really exploits the coupling between high and low fre-
quencies. Here, we start fron® at timet, and we want to reacH, v at timets. In fact, we
will instead reach a point® with || TI_u® — I u®|| < £/2.

The idea is to choose for every low frequenky < k., a set of threghigh frequencies that
will be used to control:,. To simplify matters we will assume (without loss of generality) that
ke > 2:

Definition 3.2 We define for every; with 0 < £ < k, the sets, by
I = {10"TF 1k 21081k 3. 10k TR
We also defineq® = {k : 0 <k < k.} and

=70 U #)
0<k<ksx
Lemma 3.3 The sets defined above have the following properties:
(A) Let.s, = {ky, k2, k3}. Then, of the six sumsk, + k, £ k3 exactly one equalk and one
equals—k. All others have modulus larger than.
(B) The sets#, and.#° are all mutually disjoint.
(C) Let S be a collection of three indices i, S = {k;, ko, k3}. If any of the sums-k; +

ko + k3 adds up tok with |k| < k, then eitherS = %, or S C 4° or S is of the form
S ={k,K Kk}

Remark 3.4 At the end of this section, we indicate how this construction generalizes to the
complex Ginzburg-Landau equation.

3The numbes is the highest power of the nonlinearifyin the GL equation.
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Proof. The claims (A) and (B) are obvious from the definition.gf. To prove (C) letS =

{ki, ko, k3}. If S C A° we are done. Otherwise, at least one of thés an element of an

4, for somel = 0,..., k., — 1. Clearly, if the two others are ¥y, none of the sums have
modulus less thah.. If a secondk; is in %y with ¢/ # ¢ then again none of the 6 sums can
lead to a modulus less than. Finally if ; is in ., then either all 3 are in, and we are done,

or k; = k; and thusS = {k, k', k'}. We have covered all cases and the proof of the lemma is
complete. O

We are going to construct a control which, in addition to driving the low frequency part as
indicated, also implies,(t) = 0 for k ¢ .# fort € [ty,t3]. By the conditions on#, the
low-frequency part of (3.2) is fob < k& < k, equal to (having chosen the controls equal to O
for k < k.,):

U = (1 —k*—6 Z |un|2>uk — Z UpUyy Uy, — 6 H Uy - (3.3)
neﬂ\(ﬂl_o +ltmEtn=k ne.dy,
{E,m,n}C:?LO

Whenk = 0, the last term in (3.3) is replaced byl2][],c - u,. This identity exploits the
relationsu_,, = u,. To simplify the combinatorial problem, we choose the controls of the 3
amplitudesu,, with n € . in such a way that these, are all equal to a fixed real function
z,(t) which we will determine below. With this particular choice, (3.3) reduce9 fark < k,
to
0=—ip+ (1=K =18 3 |za*)ux — (L)), — 63 . (3.4)
0<n<ks«

For k = 0 the last term is-1223. We claim that for every path € C>([t, t3]; H.) and every
e > 0, we can find a set of bounded functians- z,(t) such that the solution of (3.4) shadows
~ at a distance at most.

To prove this statement, consider the map: R* — R* of the form (obtained when
substituting the path into (3.4))

20 Fo(Z) 223 PO(Z)
P z:l » F (z) _ zf’ N P (Z) |
Zk,—1 F.,-1(2) 2 Pr.-1(2)

where theP,, are polynomials of degree at mast We want to find a solution té@’ = 0.
The F,, form a Gbbner basis for the ideal of the ring of polynomials they generate. As an
immediate consequence, the equatiofy) = 0 possesses exactBf complex solutions, if
they are counted with multiplicities [MS95b]. Since the coefficients of Bheare real this
implies that there exists at least one real solution.

Having found a (possibly discontinuous) solution for thewe find nearby smooth func-
tions z,, with the following properties:

— The equation (3.4) witht;, replacingz, and initial conditionu(t;) = uf) leads to a

solutionu with [Ju(ts) — I u®|| < g/2.
— One has(t3) = 0.



42 UNIQUENESS OF THEINVARIANT MEASURE

Having found thez;, we construct the, in such a way that fon € %, one hasu, (t) = Z.(t).
Finally, for £ ¢ .# we choose the controls in such a way thaft) = 0 for ¢t € [t,,t3]. We
defineu® as the solution obtained in this way foe= t;.

Step 4. Starting fromu® we want to reachi®?. Note thatu® is in =7, (for everyn > 0)
since it has only a finite humber of non-vanishing modes. By construction we also have
T u® — I u®] < £/2. We only need to adapt the high frequency part without moving
the low-frequency part too much.

Since, is dense irH, there is au € o7, with [[u® — u®|| < £/4. By the reasoning of
Step 2 there is for every > 0 a control for whichlTu(ts + 7') = Iyu™® when starting from
u(ts) = u®. Givene there is ar, such that ifr’ < 7, then||TI u(ts + 7') — Hyu(ts)|| < /4.
This 7. depends only ofju®|| and ¢, as can be seen from the following argument: Since
yu® = 0, we can choose the controls in such a way thagu(ts + t)|| is an increasing
function oft and is therefore bounded biyT,u®||. The equation for the low-frequency part
is then a finite dimensional ODE in which all high-frequency contributions can be bounded in
terms of R = ||u®|.

Combining the estimates we see that

Juts) — u®| = T (u(ts) — u®)| + [Tn(ults) — u®)|
< T (ults) — u(ts))|| + L (u(ts) — u®)]|
£ ™ — ) < e

The proof of Theorem 3.1 is complete. O

3.1 The combinatorics for the complex Ginzburg-Landau equation

We sketch here those aspects of the combinatorics which change for the complex Ginzburg-
Landau equation. In this case, both the real and the imaginary partsamidw _,, are indepen-

dent. Thus, we would need a noise which acts on each of the real and imaginary components
of u,, and ofu_,, independently.e., four components pet > 0 andtwofor n = 0. A possible
definition of .7, for |k| < k. is:

P {10k*+2k + k, 2. 10k*+2k’ _3. 10k*+2k} for k Z 0,
k — {10k*+2|k|+1 . |k|, 9. 10k*+2|k|+17 —3. 10k*+2\k\+1} fork < 0.

We also defines® = {k : |k| < k.} and

J=70u(U #)

|k|<kx
The analog of Lemma 3.3 is

Lemma 3.5 The sets defined above have the following properties:
(A) Let ), = {ky, k2, k3}. Then, the sumy + ks + k3 equalsk.
(B) The sets#, and.4° are all mutually disjoint.
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(C) LetS be acollection of three indices if, S = {ky, ko, k3 }. If the sumk; +k»+ k3 equals
k with |k| < k, then eitherS = .7, or S C .4 or S is of the formS = {k, k', —k'}.

Finally, the analog of (3.4) is fdi| < k,:
0 = —in + (1= (1+ ia)k?)uy — (1 + ib) (Mo [Touf), + 627) .

Apart from these combinatorial changes the complex Ginzburg-Landau equation is treated like
the real one.

4  Strong Feller Property and Proof of Theorem 1.1

The aim of this section is to show the strong Feller property of the process defined by (1.3)
resp. (1.7).

Theorem 4.1 The Markov semigroup’ defined in (1.9) is strong Feller.

Proof of Theorem 1.1This proof follows a well-known strategy, seeg, [DPZ96]. First of
all, there is at least one invariant measure for the process (1.7), since for a problem in a finite
domain, the semigroup— e~ is compact, and therefore [DPZ96, Theorem 6.3.5] applies.

By the controllability Theorem 3.1, we deduce, see [DPZ96, Theorem 7.4.1], that the tran-
sition probability from any point irf{ to any open set ir{ cannot vanishj.e., the Markov
process is irreducible. Furthermore, by Theorem 4.1 the process is strong Feller. By a classical
result of Khas’minsKj this implies thatP! is regular. Therefore we can use Doob’s theorem
[DPZ96, pp.42-43] to conclude that the invariant measure is unique. This completes the proof
of Theorem 1.1. O

Before we start with the proof of Theorem 4.1, we explain our strategy. Because of the
polynomial nature of the nonlinearity in (1.3), the natural bounds diverge with some power
of the norm of the initial data. On the other hand, the nonlinearity is strongly dissipative at
large amplitudes. Therefore we introduce a cutoff version of the dynamics beyond some fixed
amplitude and then take the limit in which this cutoff goes to infinity. We seem to need such a
technique to get the bounds (5.11) and (5.12).

The precise definition of the cutoff versidy of ' is:

Fy(r) = (1= x(llz]l/(30))) F(x) ,
wherey is a smooth, non-negative function satisfying

() = 1 if 2> 2,
X = 90 ifz<1.

Similarly, we define

Qo) = Q + x(||z||/ o)k, (4.1)

wherell,, is the projection onto the frequencies belbw
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Remark 4.2 These cutoffs have the following effect as a function|of :
— When||z|| < pthenQ,(z) = Q andFy(x) = F(z).
— Whenp < ||z|| < 20thenQ,(z) depends om and F(z) = F(z).
— When2p < |jz|| < 6p then all Fourier components 6f,(x) including the ones below
k. are non-zero and,(z) is proportional to &’(x) times a factoK 1.

— When6p < ||z|| then all Fourier components &f,(x) including the ones below, are
non-zero and(x) = 0.

At high amplitudes, the nonlinearity is truncated to 0. Thus, tbenkhnder condition cannot be
satisfied there unless the diffusion process is non-degenerate. We achieve this non-degeneracy
by extending the stochastic forcingatl degrees of freedom whejzx|| is large.

Instead of (1.7) we then consider the modified problem
d<1>tg = —A®! dt + (Fy 0 <I>7;) dt + (Qq 0 @) dW (1), (4.2)

with <I>g(§) = ¢ € H. Note that the cutoffs are chosen in such a way that the dynamizg(of
coincideswith that of ®*(¢) as long ag|®'(¢)|| < o. We will show that the solution of (4.2)
defines a Markov semigroup

Py(€) = E(p 0 ,)(8)
with the following smoothing property:

Theorem 4.3 There exist exponents v > 0, and for allp > 0 there is a constant’, such that
for everyp € B,(H), for everyt > 0 and for every¢ € 'H, the functionP; » is differentiable
and its derivative satisfies

IDPe()] < Co(1+t7)A + 11l - (4.3)

Using this theorem, the proof of Theorem 4.1 follows from a limiting argument.

Proof of Theorem 4.1Chooser € H,t > 0, ande > 0. We denote by3 the ball of radius
2||z|| centered around the origin iH. Using Proposition 2.3 we can find a sufficiently large
constanb = o(x, t, ) such that for every € B, the inequality

19
P( sup||®® > < =
(suplle*)l > o) < 5

holds. Choose € B,(H) with ||¢||L~ < 1. We have by the triangle inequality

[Pho(x) — Plo(y)| < [Plo(z) — Pyo(a)| + |P,e(x) — Pe()]
+ |Plo(y) — Pyow)| -

Since the dynamics of the cutoff equation and the dynamics of the original equation coincide
on the ball of radiug, we can write, for every € B,

[Pho(2) — Pyo(2)] = El(p 0 @)(2) — (¢ 0 P)(2)]
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s £
< 2[lpll~ P( g[l(J)B]H@ @) > o) < T

This implies that
£
[Plo(e) = PloW)l < 5 + [Pop(e) = Pre)l -

By Theorem 4.3 we see thatyfis sufficiently close ta then

9
[Ppp(x) = Pe)l < 5 -
Sincee is arbitrary we conclude th&'y is continuous whetjy||.~ < 1. The generalization
to any value of|p||_~ follows by linearity inp. The proof of Theorem 4.1 is complete. 0O

5 Regularity of the Cutoff Process

In this section, we start the proof of Theorem 4.3. If the cutoff problem were finite dimen-
sional, a result like Theorem 4.3 could be derived easily usg, the works of Fbrmander
[Hor67, Hor85], Malliavin [Mal78], Stroock [Str86], or Norris [Nor86]. In the present infinite-
dimensional context we need to modify the corresponding techniques, but the general idea re-
tained is Norris’. The main idea will be to treat the (infinite number of) high-frequency modes
by a method which is an extension of [DPZ96, Cer99], while the low-frequency part is handled
by a variant of the Malliavin calculus adapted from [Nor86]. It is at the juncture of these two
techniques that we need a cutoff in the nonlinearity.

5.1 Splitting and interpolation spaces

Throughout the remainder of this paper, we will again denoté{byandH, the spaces cor-
responding to the low (resp. high)-frequency parts. We slightly change the meaning of “low-
frequency” by including in the low-frequency part all those frequencies that are driven by the
noise which are in# as defined in Definition 3.2. More precisely, the low-frequency part is
now{k : |k|] <L — 1}, whereL =max{k : k € .#} + 1. Note thatL is finite.

SinceA = 1— A is diagonal with respect to this splitting, we can define its low (resp. high)-
frequency partsA. and A, as operators oft{, andHy. From now on,L will always denote
the dimension of,, which will therefore be identified witlR>.* We also allow ourselves to
switch freely between equivalent norms @A, when deriving the various bounds.

In the sequel, we will always use the notatiais and Dy to denote the derivatives with
respect taH, (resp.Hy) of a differentiable function defined dd. The words “derivative” and
“differentiable” will always be understood in the strong sense, if f : B, — %, with %,
and %, some Banach spaces, thexf : %, — £ (%, %), i.e, itis bounded from#; to %.

We introduce the interpolation spackS (for every~ > 0) defined as being equal to the
domain ofA” equipped with the graph norm

[l = l47]* = [|(1 = Ay

4The choice of above is dictated by the desire to obtain a dimension equiakiod notL + 1.
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Clearly, theH"” are Hilbert spaces and we have the inclusions
HYCH i >0

Note that in usual conventions{” would be the Sobolev space of indgx + 1. Our motiva-

tion for using non-standard notation comes from the fact that our basic space is thahwith
derivative, which we calH, and thaty measures additional smoothness in terms of powers of
the generator of the linear part.

5.2 Proof of Theorem 4.3

The proof of Theorem 4.3 is based on Proposition 5.1 and Proposition 5.2 which we now state.

Proposition 5.1 Assume that the noise satisfies condition (1.6). Then (4.2) defines a stochastic
flow ®! onH with the following properties which hold for apy> 1:

(A) If £ € H” with somey satisfyingd < ~ < «, the solution of (4.2) stays K, with a
bound

E( sup [@4IE) < Crpoll + [IE]1L) (5.1a)
o<t<T

for everyl > 0. If v > 1 the solution exists in the strong sensén

(B) The quantityd’ (&) is in H* with prgbabilityl for every timgt > 0 and everyt € H.
Furthermore, for every” > 0 there is a constant’;,, , for which

E( sup e[ ®L©)]2) < Crpoll + €] - (5.1b)
o<t<T

(C) The mapping — ®.(£) (for w andt fixed) has a.s. bounded partial derivatives with
respect tc. Furthermore, we have for eve¢yh € H the bound

E( sup [(DRLE)AI) < Crpolbll” (5.1¢)
o<t<T

for everyT > 0.

(D) For everyh € ‘H and{ € 'H®, the quantity(D®'(£))h is in H* with probability 1 for
everyt > (0. Furthermore, for a- depending only on the bound

E(__sup 7 [(DOLOAIL) < Crp o1 + 1€ IB]7 (5.1d)

holds for everyl” > 0.
(E) For everyé € HY withy < «, we have the small-time estimate

E( SUpII®GE) — e MEIl) < Crp o1+ el (5.1¢)

which holds for every € (0,7] and everyl" > 0.

This proposition will be proved in Section 8.4.
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Proposition 5.2 There exist exponents, v, > 0 such that for every € C?(H), everyé € H”
and everyt > 0,
“IMellis - (5.2)

Proof of Theorem 4.3Note first that for allr > 0, one hag|P; ¢~ < [|¢||L~. Furthermore,
forT > 1,

IDPe()]l < Co(1 +t7)(1+ [I€

IDP; @Il = IID(P, (P, )@ -
Therefore, if we can show (4.3) for< 1, then we find for any > 1:

IDP; (O] < 2C,(1 + [Py el < 20,1+ [IE1M)]¢ll -

In view of the above, it clearly suffices to show Theorem 4.3 far(0, 1].
We first prove the bound for the cagec C?(H). Leth € H. Using the definition (1.9) of

Pty and the Markov property of the flow we write

| DR o(©h]l = | DE(Pyp o B )R] = [E((DPyp o @) DER) |
< VE[(DPLw 0 ®,)(&)[*EII DBLEA*

Bounding the first square root by Proposition 5.2 and then applying Proposition 5.1 (B—C),
(with T"= 1) we get a bound

v )2\ JE|| D&)A
hl| .

| DRZGER] < Collpllie (1 +7)y/E(1 + [ @4(E)
< Cpllpllise (T + 7 )7 (1 + [1€]1)
Choosingu = p. + av, andv = v, we find (4.3) in the case whep € CZ(H). The method

of extension to arbitrary € B,(H) can be found in [DPZ96, Lemma 7.1.5]. The proof of
Theorem 4.3 is complete. 0

5.3 Smoothing properties of the transition semigroup

In this subsection we prove the smoothing bound Proposition 5.2. Thus, we will no longer
be interested in smoothing in position space as shown in Proposition 5.1 but in smoothing
properties of the transition semigroup associated to (4.2).

Important remark. In this section and up to Section 8.6 we always tacitly assume that we are
considering the cutoff equation (4.2) and we will omit the index

Thus, we will write Eq.(4.2) as
dP" = —AD' dt + (F o ®') dt + (Q o D) dW (2) . (5.3)

The solution of (5.3) generates a semigroup on the spg@¢) of bounded Borel functions
overH = H_ © Hy by
Plo=E(po®), peByH).

Our goal will be to show that the mixing properties of the nonlinearity are strong enough to
makeP'y differentiable, even ifp is only measurable.
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We will need a separate treatment of the high and low frequencies, and so we reformulate
(5.3) as

dd! = —AL®} dt + (FL o &) dt + (Q o ®') dW (1) , ol € H, (5.4a)
ddt, = —Au®L dt + (Fy o ®') dt + Qu dWy(t) oL € Hy , (5.4b)

where’H, andHy are defined in Section 5.1 and the cutoff versiorf)ovas defined in (4.1).
Note thatQn (®*(€)) is independent of andt by construction, which is why we can u€g, in
(5.4b).

The proof of Proposition 5.2 is based on the following two results dealing with the low-
frequency part and the cross-terms between low and high frequencies, respectively.

Proposition 5.3 There exist exponents v > 0 such that for every € C?(H), everyé € H”
and everyT > 0, one has

|E((DLp 0 @YEDLENE)|| < Crt (1 + IIEN) ¢l |
forall t € (0,7].°

Lemma 5.4 For everyT' > 0 and every > 1, there is a constant’r, > 0 such that for every
t < T, one has the estimates (valid for € H_ andhy € Hy):

E sup[(DLOp) (A" < Crp t7[| A, (5.52)

0<s<t
E sup [(Dh@l)©hull” < Crp 1" (5.5b)

<s<t

These bounds are independent af H.

Remark 5.5 In the absence of the cutoff one can prove inequalities like (5.5), but with an
additional factor of { + ||£||*)* on the right. This is not good enough for our strategy and is the
reason for introducing a cutoff.

The proof of Proposition 5.3 will be given in Section 6 and the proof of Lemma 5.4 will be
given in Section 8.5.

Proof of Proposition 5.2 As in the proof of Theorem 4.3, it suffices to consider times T,
whereT is any (small) positive constant. The proof will be performed in the spirit of [DPZ96]
and [Cer99], using a modified version of the Bismut-Elworthy formula. Take a fungtien
CZ(H). We conside), andQy as acting on and intd{, andHy respectively. It is possible to
write as a consequence od formula:

(60 @) = P'ol©) + [ (DP'~"¢) 0 27)(€) (Q 0 0")(©) AW (s
= PO+ [ (DP9)0 (O QLo ¥ I ()

SRecall that not only the flow, but for example also the constgntiepends om.
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+ /Ot«DHPt-%o) 0 *)(€) Qu dWi(s) - (5:6)

Choose somé € Hy. By Proposition 5.1 (D)(Dy®},)(€)h is in H* for positive times and is
bounded by (5.1d). Using condition (1.8b) we see that maps toHy and so we can multiply
both sides of (5.6) by

[ QR D) O i)

where the scalar product is taken?fy. Taking expectations on both sides, the first two terms
on the right vanish becaugél’, anddWy are independent and of mean zero. Thus, we get

3t/4
E((po®)(©) [ (Qn' (DuBR)©, dWi(s)))
(5.7)
3t/4
—E [ ((DuP"*¢) 0 0°)(&) (Dud)(©hds
t/4
We add to both sides of (5.7) the term
3t/4
E [ ((DP¢) 0 %)) (DuPL)(©hds
t/4
and note that the r.h.s. can be rewritten as
3t/4
DHE((P'*¢) o ©°)(©)h ds = & DuE(ip 0 @) (©)h
since by the Markov propertl (P! 5o o ®*)(£) = E(p o ®)(&). Therefore, (5.7) leads to

(DWP' o) = SE((20 8@ | (5 (Dt (. dTi(s)

o ra (5.8)
+2E [T (DLP0g) 0 @°)(©) (D) (R ds
t/4
For the low-frequency part, we use the equality
(DLP'¢)(€) = E((DLP?g 0 92)(€)(DL®{*)(€)) 59

4 E((DHPt/2<,0 o ¢t/2)(€)(DL‘I’32)(5)) ‘

We introduce the Banach space% ,,, ,, of measurable functiong : (0,7) x H* — H, for

e “ A
th|| f (T
s, = SUp sup —— " 5.10

H|f”|T7M*7 O<t<PT ge’HE!) 1+ ||£||gé* ( )
is finite. Recall that we consider here only times smaller than the (small) Zinee (0, 1]
which we will fix below. Choose:, as the maximum of the constantsand theu appearing
in Proposition 5.3. Similarly, is the maximum of thes of Proposition 5.1 (D) and the one in
Proposition 5.3.
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We will construct a’ > 0 such thatf,, : (¢,&) — (DPp)(§) belongs to%;,,. .. and that
Il foll 7. < Cll@llL, thus proving Proposition 5.2. The fact thate %, . for everyT
if o € C}(H) is shown in [DPZ92b, Theorem 9.17], so we only have to show the bound on its
norm.

The following inequalities are obtained by applying to (5.8) in order the Cauchy-Schwarz
inequality and the definition (5.10), then (1.8b), (5.1d), and again Cauchy-Schwarz. The last

inequality is obtained by applying (5.1a) and (5.1c). This yieldsifer H:

. 9 8t/4 , 2
(P < el (€ [ 10! DunIP as)

2 /41 4 [|2°(E)[|e s
2ol €I w eon) s

(t — )M
< Ot l@lliee (1 + (€l IR (5.11)
1/2
+ C | foll e (E sup (1 + [|2%(¢) Z*)Q)
el

1/2
X (E sup H(DH(pi)(ﬁ)hHQ)
o) o)

sl 7
Note that this is the place where the lower bound (1.8b) on the noise is really used.
For the low-frequency part Eq.(5.9) we use first Proposition [§23/2¢|| .~ < ||¢||L~, and
the definition (5.10), then Cauchy-Schwarz, and finally (5.5a) and (5.1b). This ledds féf,
to:

< Ct Ol (L + €l Rl + Ot folliun o (0 + 1€

hl| .

(DLP)(©)h] < Ot [l (1 + [I€
O ol E((1+ [92@I) (DL
< Gt lpllue (1 + 1€ ]l2) 11 (5.12)
+ O ol VEQ + [0V EN(DLO) O]
< Ctlgllus (1 + €12) 1A + O follgenn (1 + €12 A1)

Combining the above expressions we get for eviery (0, 1] a bound of the type

o) |17l

Il e < Cilloli + CoTl foll . -
Our final choice ofl" is now T/ = min{1,1/(2C5)}, and we find
I fellz s < Cllllis - (5.13)

Sincef,(t,£) = (DP'¢)(§), inspection of (5.10) shows that (5.13) is equivalent to (5.2). The
proof of Proposition 5.2 is complete. O
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6 Malliavin Calculus

To prove Proposition 5.3 we will apply a modification of Norris’ version of the Malliavin cal-
culus. This modification takes into account some new features which are necessary due to our
splitting of the problem in high and low frequencies (which in turn was done to deal with the
infinite dimensional nature of the problem).

Consider first the deterministic PDE for a flow:

WO _ a9+ (rowe. 61)

This is really an abstract reformulation for the flow defined by the GL equation{ &etbngs
to a spacé+, which for our problem is a suitable Sobolev space. The linear opetasaxthosen
asl — A, while the non-linear tern” corresponds t@u — u? in the GL equation. Below, we
will work with approximations to the GL equation, and all we need to know isthat{ — H
is the generator of a strongly continuous semigroup, &nglill be seen to be bounded with
bounded derivatives.

For each fixed € ‘H we consider the following stochastic variant of (6.1):

dUH(E) = =AU E) dt + (F o W) (&) dt + (Q o UH)(E) dW (1) . (6.2)

with initial condition U°(¢) = £. Furthermore)V is the cylindrical Wiener process on a sepa-
rable Hilbert spac&V and( is a strongly differentiable map froft to .Z?(W, H), the space
of bounded linear Hilbert-Schmidt operators frédto H.

We next introduce the notion of directional derivative (in the direction of the noise) and the
reader familiar with this concept can pass directly to (6.3). To understand this concept consider
first the case of a function— v! € W. Then the variatior,, V' of ¥* in the direction; is
obtained by replacindV () by dW (t) + ev! dt and it satisfies the equation

d9, V" = (-=AD,, V" + (DF o )9, V") dt + ((DQ o V)2, W) dW (t)
+(Q o Ul dt .

Intuitively, the first line comes from varying® with respect to the noise and the second comes
from varying the noise itself.

We will need a finite numbefL of directional derivatives, and so we introduce some more
general notation. We combink vectorsy; as used above into a matrix calledvhich is an
element of) x [0, c0) — WE. We identify\W" with Z(R”, ). Note that we now allow to
depend orf2, and to make things work, we requirdo be a predictable stochastic process,

v* only depends on the noise before timé he stochastic procesg € H (corresponding to
2,¥") is then defined as the solution of the equation

dGLh = (=AG! + (DF 0 U)GL + (Q o W')o' ) hdt
+ ((DQ o W) G4h) AW (1), (6.3)
GY=0,

which has to hold for alh € R”.
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Having given the detailed definition ¢f:, we will denote it henceforth by the more sug-
gestive

G,(&) = 2,9'(9)

to make clear that it is a directional derivative. We use the notatiprio distinguish this
derivative from the derivativé) with respect to the initial conditiof.
For (6.2) and (6.3) to make sense, two assumptions,ap andv are needed:

Al F: H — HandQ : H — £*(W, H) are of at most linear growth and have bounded
first and second derivatives.

A2 The stochastic process— ! is predictable, has a continuous version, and satisfies

E( sup ||vs||p) < 00,

s€[0,t]

for everyt > 0 and everyp > 1. (The norm being the norm of/X.)

It is easy to see that these conditions imply the hypotheses of Theorem 8.9 for the problems
(6.2) and (6.3). Therefor@! is a well-defined strongly Markovian stochastic process.
With these notations one has the well-known Bismut integration by parts formula [Nor86].

Proposition 6.1 Let ¥* and 2, V' be defined as above and assuAieand A2 are satisfied.
Let B C 'H be an open subset &f such that¥’ € B almost surely and lep : B — R be a
differentiable function such that

Ello(T9)|* + E|[Dp(T9)|* < o0 .

Then we have for everdy € R the following identity irR:

E(Dp(0) 2, W'h) — E(gp(llft) / t(vsh,dW(s») , 6.4)
where(-, -) is the scalar product oV .

Remark 6.2 The Eq.(6.4) is useful because it relates the expectatiangoto that of o. In

order to fully exploit (6.4) we will need to get rid of the facter, ¥'. This will be possible by a
clever choice ofy. This procedure is explained for example in [Nor86] but we will need a new
variant of his results because of the high-frequency part. In the sequel, we will proceed in two
steps.We need only bounds dp, ¢, since the smoothness of the high-frequency part follows
by other meansThus, itsufficesto constructZ, V' in such a way thatl, 2, V" is invertible,
wherell, is the orthogonal projection ontd, . The construction ofl. 2, ¥ follows closely

the presentation of [Nor86]. However, we also waintZ, V' = 0 and this elimination of the
high-frequency part seems to be new.

Proof. The finite dimensional case is stated (with slightly different assumptions on the function
F) in [Nor86]. The extension to the infinite-dimensional setting can be done without major
difficulty. By A1-A2 and Theorem 8.9, we ensure that all the expressions appearing in the
proof and the statement are well-defined. AR we can use &'s formula to ensure the validity

of the assumptions for the infinite-dimensional version of Girsanov’s theorem [DPZ96].0
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6.1 The construction ofv

In order to use Proposition 6.1 we will construct= (v, vy) in such a way that the high-
frequency part 0&7,9' = (2,9}, 2,9%,) vanishes. This construction is new and will be ex-
plained in detail in this subsection.

Notation. The equations which follow are quite involved. To keep the notation at a reasonable
level without sacrificing precision we will adopt the following conventions:

(DLFL)t = (DLFL) (e} (I)t y
(DLQL) = (DLQL) o @,

and similarly for other derivatives of th@ and theF'. Furthermore, the reader should note that
D Q. is a linear map fron¥{_ to the linear map%{, — H_ and therefore, below,{ Q. )h
with h € H_ is alinear map{, — H,_. The dimension o, is L < oo.

Inspired by [Nor86], we define the x L matrix-valued stochastic procesggsandV}’ by the
following SDE’s, which must hold for every € H, :

dUh = —A U hdt + (D F)' UL hdt + (DLQL)'ULR) dW (1) ,
U)=1¢ L(H, H), (6.5a)

dVih = VI ALhdt — VE(DLR) hdt — VE((DLQL)'R) dWL(1)
L-1
+> ((DLQL)t((DLQL)th)ei)ei dt,
=0
Vi=1¢c LM, H). (6.5b)

The last term in the definition df’ will be written as
L-1 ]
> V(D)) ht
1=0

whereQ); is thei™ column of the matri>Q, .

For small times, the proces§ is an approximation to the partial Jacobi@n®;, andV{’ is
an approximation to its inverse.

We first make sure that the objects in (6.5) are well-defined. The following lemma summa-
rizes the properties df. andV| which we need later.

Lemma 6.3 The processe&| and V]’ satisfy the following bounds. For evepy> 1 and alll
T > 0 there is a constant'r, , independent of the initial data (fab’) such that

E sup (JU[P + [VII?) < Crpo (6.6a)
te[0,T]
E(sup [V — I||?) < Crpee”?, (6.6b)
t€[0,e]

for all e < T. FurthermoreV, is the inverse of/, in the sense that’ = (U})~! almost surely
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Proof. The bound (6.6a) is a straightforward application of Theorem 8.9 whose conditions are
easily checked. (Note that we are here in a finite-dimensional, linear setting.) To prove (6.6b),
note that is the initial condition fol. . One writes (6.5b) in its integral form and then the result
follows by applying (6.6a). The last statement can be shown easily by applgiadgdtmula to

the product/'U}. (In fact, the definition of/ was precisely made with this in mind.) O

We continue with the construction of Since A and (@ are diagonal with respect to the
splitting’ H = H_ & Hy, we can write (6.3) as

d 2,9, = (AL 2,9, + (DLFL)' 2,9} (6.72)
+ (DuFL) 2,9} + Qo ) dt
+ ((DLQL)t qu)f_) dW_(t)
+ ((DHQL)' 2,01,) AWL(),

d 2,9 = (—An 2,9}, + (DL Fn)' 2,9, (6.7b)
+ (DuFW)’ 2,8}, + Quuty) dt |

with zero initial condition. Since we want to consider derivatives with respect to the low-
frequency part, we would like to define (implicitly}, as

vy = —Qu (DLFR)' 2,9} .

In this way, the solution of (6.7b) would bg,®}, = 0. We next would define the “directions”
v. anduvy by
w=MWQ",
v = —Qn (DLFW) 2,91 ,
where 2,®} is the solution to (6.7a) witty,d}, replaced by andv, replaced by(V/' Q})".
Here, X* denotes the transpose of the real mai¥ix
The implict problem (6.8) can be somewhat simplified by the following device: Since we

are constructing a solution of (6.7) whose high-frequency part is going to vanish, we consider
instead the simpler equation fotr € 2 (H,, H.):

dy' = (= Ay’ + (DLR)'Y' + QLI QL)) di + ((DLQU)'y') dWL(), (6.9)

with 3° = 0, and where we use again the notatigh= F o ®!, and similar notation fo€).

The verification that (6.9) is well-defined and can be bounded is again a consequence of
Theorem 8.9 and is left to the reade@iven the solution of (6.9) we proceed to make our
definitive choice of{ andv:

(6.8)

Definition 6.4 Given an initial condition € H* (for ®*) and a cutoffo < oo we define
vt =l @ ofy by

w= (VEQL = (W (Quo2Y))",

vh = —Qp (DLFR) y' = —Qi' (DLFw) 0 @) o',
whered’ solves (5.3))/' is the solution of (6.5b), angf solves (6.9).

(6.10)
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Lemma 6.5 The process' satisfies forallp > 1 and allt > 0 :

E(sup 0°]") < Cipo(1 + [I€]la)

s€[0,t]
i.e., it satisfies assumptiok2 of Proposition 6.1.
Proof. By Proposition 5.1 (B)®' is in H® for all ¢ > 0. In Lemma 8.1P6, it will be checked
that D Fy mapsH® into Z(H., H* N ‘Hy) and that this map has linear growth. By tlever

bound(1.6) on the amplitudes,, we see thaf),;' is bounded fron#{* N Hy to Hy and thus
the assertion follows. 0

We now verify that?, @}, = 0. Indeed, consider the equations (6.7). This is a system for two
unknowns,Y' = 2,®! and X* = 2,®},. For our choice o anduf, this system takes the
form

dY' = (=AY + (DLFL) Y (6.11a)
+ (DR X'+ QLOY QL)) dt
+ ((DLQ)'Y!) AW (t)
+ ((DhQU)' X*) dWAL(1)

dX'= (=Ap X' + (DLFR)' Y (6.11b)
+ (DnFn) X' — (DLFH)tyt) dt .
By inspection, we see thaf’ = 0 and
dY' = (ALY + (DLF)'YY) dt + (DLQL)' YY) dWL(t) + QF (VIQL)* dt (6.12)

solve the problemi.e., Y = ¢!, by the construction ofi’. Applying the 16 formula to the
productV'Y* and using Egs.(6.5b) and (6.12), we see immediately that we have d&fined
2,%®} in such a way that

AV 2,90) = QUL (V) dt

because all other terms cancel. Thus we finally have shown

Theorem 6.6 Given an initial conditiont € H* (for ®') and a cutoffp < oo, the following is
true: If v* is given by Definition 6.4 then

t
2,0, = UL [ V(@) ° (17" ds = ULCL,
2,0, =0.

(6.13)

Definition 6.7 We will call the matrixC{ the partial Malliavin matrix of our system.
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7 The Partial Malliavin Matrix

In this section, we estimate the partial Malliavin matfix from below. We fix some time > 0
and denote bys” the unit sphere ilR”. Our bound is

Theorem 7.1 There are constantg, » > 0 such that for ever{’ > 0 and everyp > 1 there is
a Cr,,, such that for all initial conditiong € H“ for the flow®’ and all¢ < T, one has

E((det Gf) ™) < Cry gt 71+ JE]l0)"”

Corollary 7.2 There are constantg, v > 0 such that for ever{’ > 0 and every > 1 there is
aCr,, such that for all initial conditiong € H“ for the flow®* and allt < T', one has, with
v given by Definition 6.4:

El(2,20) "Il < Crpot (14 [[€]la)™ -

This corollary follows from @, ®})~! = (C{)~'V! and Eq.(6.6a).
As a first step, we formulate a bound from which Theorem 7.1 follows easily.

Theorem 7.3 There are gu > 0 and av > 0 such that for every > 1, everyt < T and every
¢ € 'H?, one has

t
P(int, [ IQLVEY M ds < <) < Cryget77(1 4 L)
with Cr,, , independent of.

Proof of Theorem 7.1Note that|; [|Q (V*)*h||? ds is, by Eq.(6.13), nothing but the quantity
(h,C!h). Then, Theorem 7.1 follows at once. 0

The proof of Theorem 7.3 is largely inspired from [Nor86, Sect. 4], but we need some new
features to deal with the infinite dimensional high-frequency part. This will take up the next
three subsections.

Our proof needs a modification of the Lie brackets considered when we studgtimahkider
condition. We explain first these identities in a finite dimensional setting.

7.1 Finite dimensional case

Throughout this subsection we assume that gthand H, are finite dimensional and we
denote byN the dimension ofH{. The function() mapsH to . (H,H), and we denote by
Q; : H — Hitsi™ column ¢ = 0,...,N — 1).5 Finally, F is the drift (in this section, we
absorb the linear part of the SDE info= — A + F, to simplify the expressions). The equation
for @t is

t + N—1
PO =+ [[(Foe)@ds+ [ Y (Qio ) dui(s).
=0

®There is a slight ambiguity of notation here, si@greally means), ; which is not the same a3,.
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Let K : H — H. be a smooth function whose derivatives are all bounded and define
K'=Ko®!, F'=F o &', and@! = Q; o ®'. We then have by #'s formula

(DK)tFthNZI(DK) Q" dwi(t) + 1 Z(DQK) Q% QY dt . (7.1)

=0 1=0
We next rewrite the equation (6.5) fof as:

L-1 L-1

AVl = ~VHDLR) dt — Y. VEHDLQy) dwi(t) + Y ViE(D Q) dt

=0 =0
By Itd’s formula, we have therefore the following equation for the prodi{ict™:

L-1

dVIK') = VI DR K dt — Vit ST (DLQi) K dw(t)
=0
L—1 N
+VES (D)) K" dt + VI(DK)' F' dt
=0
N-—1
+ WY (DK)'Q; duwi(t) (7.2)
=0
N-1
+5V Y (DPK)(QF; Q) dt
=0

L—1
~ VIS (DLQ)(DK)' QL dt .
=0

By construction,D_ Q; = 0 for i > L and therefore we can extend all the sums aboVE te1.
The following definition is useful to simplify (7.2). Let : H — HandB : H — H,_
be two functions with continuous bounded derivatives. We defingtbgcted Lie bracket

[A,B]L : H — H_ by

[A, Blo(z) = ILL[A, Bl(z) = (DB(x))A(z) — (DLAL(x)) B(z) .

A straightforward calculation then leads to

N-1
AWK = V([P KT+ 5 D0 1Qi [Qn K1) dt
i=0

N-1

+ W Z: [Qi, KL duwi(t) (7.3)

N-1

+ 30 Y ((DLQ))’ K = (DE)(DQ:)'Q!

=0
+(DDLQ:) QL K)) dt
Note next that fori < L, both K and Q; map toH_ and thereforeD D, Q;(Q;; K) equals

D2Q;(Q;; K) wheni < L and isO otherwise. Similarly, DK)(DQ;)Q; equals DK)(D.Q,)Q;
when: < L and vanishes otherwise. Thus, the last sum in (7.3) only extentds-ta.
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In order to simplify (7.3) further, we define the vector fidld H — H by

L L-1
F=F-3% (DQ)Q: .
0

i=

Then we get

_ N-1 N-1
dVEKY) = VE(IF, KIL+ 3 D2 1Q0 [Qi K1) dt+ V0 S [Qi, K1E dwi(t) -
=0

=0

This is very similar to [Nor86, p. 128], who uses conventional Lie brackets instead]of. |

7.2 Infinite dimensional case

In this case, some additional care is needed when we transcribe (7.1). The problem is that
the stochastic flowb! solves (5.4) in the mild sense but not in the strong sense. Nevertheless,
this technical difficulty will be circumvented by choosing the initial conditiorHf. We have
indeed by Proposition 5.1 (A) that if the initial condition is W with v € [1, o], then the
solution of (5.4) is in the same space. Thus, Proposition 5.1 allows us todsséotmula also
in the infinite dimensional case.

For any two Banach (or Hilbert) space$, %,, we denote by’(%#,, %,) the set of allC*>
functions#,; — %,, which are polynomially bounded together with all their derivatives. Let
K € P(H,H.)andX € P(H,H). We define as aboveX], K], € P(H,H.) by

[X, K]L(z) = (DK (2)) X (z) — (DL XL(2)) K () .
Furthermore, we defineq], K]. € P(D(A), H.) by the corresponding formulage.,
[A, K] (z) = (DK (x))Az — ALK (),

whereA = 1 — A. Notice that if K is a constant vector field,e, DK = 0, then [4, K],
extends uniquely to an element B{H, H).

We choose again the badis }3°, of Fourier modes irH (see Eq.(1.5)) and definky;(t) =
(e;, dW (t)). We also define the stochastic procé8g¢) = (K o d%)(€) and

L-1
F=F— % D (DLR)Q;
=0
where@;(z) = Q(z)e;. Then one has

Proposition 7.4 Let¢ € H! and K € P(H,H,). Then the equality
W@WQZK@+£W@2WMm@Mw)
+ [ O(-1A KO + [, K1) ds
3 [ WO X000 KO s

holds almost surely. Furthermore, the same equality holésifH? and K € P(H!, H.).
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Note that by [, K1; () we mean( DK (9°(£)) ) (A®*(€)) — ALK (2°(E)).
Proof. This follows as in the finite dimensional case by'stformula. O

7.3 The restricted Hormander condition

The condition for having appropriate mixing properties is the followirigrdander-like condi-
tion.

Definition 7.5 Let K = {K®@}M be a collection of functions i®(H, H.). We say thatC
satisfies theestricted Hhrmander conditionf there exist constants R > 0 such that for every
h € H, and everyy € H one has

sup inf (h,K(z))* > 6||h|* . (7.4)

KeK |z—y|<R

We now construct the sét for our problem. We define the operator
[X0> : ]L : P(H77HL) - P(HA{+17HL)

by

L—

—

X, K] = —[A, K] + [F, K1+ 2 3@ [Qn K1, — 3 3 [(DLQ)Q: K], -
1=0 =0

This is a well-defined operation sin€gis Hilbert-Schmidt andD( is finite rank and we can
write

o0 o0

Qi [Qi K1), =D (D*K) Qi Qi) +

=0 1=0
with r a finite sum of bounded terms.

Definition 7.6 We define
— Ko ={Q;, withi=0,...,L —1},
- Ky ={[X°Qi]., withi = k,,...,L—1},
— K¢ ={[Qs K], with K € K,y andi = k., ..., L — 1}, when( > 1.

Finally,
! K=K,U---UKs5."

Remark 7.7 Since fori > k, the Q; are constant vector fields, the quantity”, K] is in
P(H,H,) and not only inP(H!, H,). Furthermore, ifK € K then DK is bounded for all
j=0.

We have

Theorem 7.8 The set constructed above satisfies the restrictdaattdander condition for the
cutoff GL equation ib is chosen sufficiently large. Furthermore, the inequality (7.4) holds for
R = p/2. Finally, 6 > &, > 0 for all sufficiently largeo.

"The number 3 is the power 3 irP.
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Proof. The basic idea of the proof is as follows: The leading tern'ag the cubic term,™
with m = 3. Clearly, ifiy, i5, i3 are any 3 modes, we find

[61'1, [6,‘2, [u — u37 ei3]L]L]|_ = Z CkHLek ) (75)

k== Fistis

where thee, are the basis vectors &f defined in (1.5), and th€, arenon-zerocombinatorial
constants. By Lemma 3.3 the following is true: For every choice of a fixdx three numbers
i1, 12, andis of .7, satisfy
— Forj=1,2,30nehas; € {k.,...,L —1}.
— If |k| < k. exactly one of the six sum&i; + iy + i3 lies in the sef{0, ..., k. — 1} and
exactly one lies i{— (k. — 1),...,0}.
In particular, the expression (7.5) does not depend.dhinstead ofu® we take a lower power,
the triple commutator will vanish.
The basic idea has to be slightly modified because of the cutdffrst of all, the constant
R in the definition of the lBrmander condition is set t8 = p/2. Consider first the case where
|lz|| > 50/2. In that case we see from (4.1) that te;, viewed as vector fields, are of the
form
‘ o (qz + 1)61‘, if 1 <k,
QQ’Z(:U) B { qi€i, if ¢ > k*

Since these vectors span a basisHyf the inequality (7.4) follows in this case (already by

choosing onlyK € KCp).
Consider next the more delicate case whefi < 5p/2.

Lemma 7.9 For all ||z|| < 3¢ one has fofiy, 4,13} = .# the identity

[eilv [ei27 [X07 61’3]L]L]L($) = Z CkHLek + TQ(Q:) ’ (76)
k=*4i1+i041i3

wherer, satisfies a bound
Iro(@) < Co™*,

with the constan€’ independent af and ofk < k..

Proof. In [X°, -], there are 4 terms. The first,, leads successively tol[ e;,]. = (1 + i2)e;,,
which is constant, and hence the Lie bracket withvanishes. The second term contains the
non-linear interactiorf,. Since||z|| < 3p one hagt,(x) = F(z). Thus, (7.5) yields the leading
term of (7.6). The two remaining terms will contributestg{z). We just discuss the first one.
We have, using (4.1),

[Quse4]u(e) = =DQusloles, = —o\ (Il )@” €|T>

This gives clearly a bound of order! for this Lie bracket, and the further ones are handled in
the same way. O



UNIQUENESS OF THEINVARIANT MEASURE 61

We continue the proof of Theorem 7.8. Whier: k., we consider the elementskf. They
are of the form

(Qoin: [Qoiar [X Qo ] (@) = 4iningis (Y. Cillieg +7o(2)) -

k=%1i1 10413

Thus, forp = oo these vectors together with thg with i € {k,, ..., L—1} spanH, (indepen-
dently ofy with ||y|| < 3p) and therefore (7.5) holds in this casel|if| < 50/2 andR = o/2.
The assertion for finite, but large enougtiollows immediately by a perturbation argument.
This completes the case [bf|| < 50/2 and hence the proof of Theorem 7.8. O

Proof of Theorem 7.3The proof is very similar to the one in [Nor86], but we have to keep track
of thez, t-dependence of the estimates. First of all, chaose? andt € (0, ¢,].

From now on, we will use the notatiof(v) as a shortcut fo”'(1 + [|z||¥), where the
constant”' may depend om, andp, but is independent of and¢. Denote byR the constant
found in Theorem 7.8 and define the subSebf H? by

B.={yeH : ly—z| <R and |y|, < all, +1fory=1,2} .

We also denote b§g(7) a ball of (small) radiug)(1/L) centered at the identity in the space of
all L x L matrices. (Recall that is the dimension of{_, and thatX" € K maps toH,.) We
then have a bound of the type

sup supZH[Qz,K]L(y)H < 0(0) . (7.7)
This is a consequence of the fact tha®* is trace class and thus the sum converges and its
principal term is equal to

Tr(Q" () (DK)"(y) (DK)(y) Q)
= Tr((DK JW)QW) Q") (DK)(v))

1Q*(y) (DK)"(y)ei]|> < C, .

1=0

The last inequality follows from Remark 7.7. The other terms form a finite sum containing
derivatives of the); and are bounded in a similar way.
We have furthermore bounds of the type

sup sup [[[X°, K1.()|* < O@),

yeB; KeK

sup sup X%, [X°, K1) W)]* < OWw) (7.8)

Sup sup ZH Qi [X°, K1 )* < O@),
yeB: KeK ;—g
wherer = 1.
Let S be the unit sphere i, . By the assumptions ok and the choice oB(/) we see
that:
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(A) For everyh, € S, there exist a € K and a neighborhoodV” of i, in S such that

. . . 2
ylenli Vlerg(f) hlgftf (VE@),m” =

|

with ¢ the constant appearing in (7.4).
Next, we define a stopping timeby 7 = min{¢, 7y, 72} with

7 =inf{s >0 : ®°(z) € B,},
m=inf{s >0 : V(z) & B(I)} ,
t < T as chosen in the statement of Theorem.7.3

It follows easily from Proposition 5.1 (E) that the probabilityefbeing small (meaning that in
the sequel we will always assurne< 1) can be bounded by

P(ri <€) < Gyl + [|[]2) "<,
with C,, independent of. Similarly, using Lemma 6.3, we see that
P(ry < ¢) < Cpel .

Observing thaP(t < ¢) < tP<P and combining this with the two estimates, we get for every
p= 1

P(r <e) < O(16p)tPeP .
From this and (A) we deduce

(B) for everyhy € S, there exist ak € K and a neighborhoodV” of /4 in S. such that for
e <1,

supP< / "V @)K (@), h)2 ds < 5> < P(r < 2/6) < O(16p)t Pe?
heN 0
with ¢ the constant appearing in (7.4).
Following [Nor86], we will show below that (B) implies:
(C) for everyhy € S, there existan € {k,,...,L — 1}, aneighborhoodV of i, in S, and
constants, u > 0 such that forr < 1 andp > 1 one has

SupP(/T<VLS(x)Qf(3:), h)?ds < 8) < O(vp)t HeeP .
heN 0

Remark 7.10 Note that for small|z||, Q;(z) = Q. ,(z) may be 0 when < k., but the point is
that then we can find anothéfor which the inequality holds.

By a straightforward argument, given in detail in [Nor86, p. 127], one concludes that (C) implies
Theorem 7.3.

It thus only remains to show that (B) implies (C). We follow closely Norris and choose a
K € K such that (B) holds. X happens to be i’y then it is equal to &);, and thus we
already have (C). Otherwise, assufie= K; with j > 1. Then we use a Martingale inequality.
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Lemma 7.11 Let’H be a separable Hilbert space antd(¢) be the cylindrical Wiener process
on’H. Let3! be areal-valued predictable process afig¢? be predictabléH{-valued processes.
Define

t t
a' =d° +/ 3% ds +/ (v*,dW (s)) ,
0 0
t t
b= +/ a* ds +/ (¢, dW(s)) .
0 0
Suppose < t, is a bounded stopping time such that for some constgnt oo we have
sup {15°[, la’[, IC°I], (7]} < Co -
0<s<T
Then, for every > 1, there exists a constant, ;, such that
P([ t)2ds<e® and [ (0P + C*) ds > 2) < Cpyy (1+ CEYT
0 0
for everys < 1.

Proof. The proof is given in [Nor86], but without the explicit dependencegnif we follow
his proof carefully we get an estimate of the type

P(/OT(bs)2 ds < &' and /OT(|aS|2 1P ds > (1+ CR)e) < Cy (1 + CRyper .

Replacings by €% and making the assumptien< 1/(1 + C3), we recover our statement. The
statement is trivial foe > 1/(1 + C3), since any probability is always smaller than O

We apply this inequality as follows: Define, féf, € K,

a'(z) = (V' ([X°, Kolt (@), )

b (x) = (VKi(x), h)

Bi(x) = (VX [X°, Koll)))(), )
(V)i() = (V@i [X°, Kol ]))(), )
(€Yi(x) = (VH([Qi, Kol! ) (), h) -

In this expression¢(z) € H, ((Y)(z) = (¢!(x),e;) and similarly for they!. It is clear by
Proposition 7.4, Eq.(7.7), and Eq.(7.8) that the assumptions of Lemma 7.11 are satisfied with
Co = O(v) for somer > 0.

We continue the proof that (B) implies (C) in the case wiiém ;, with j = 1. Then, by
the construction ok’; with j > 1, there is &K, € K,_; such that we have eithéf = [Q);, K],
forsome: € {k,,...,L—1},or K =[X"° Ky].. Infact, forj = 1 only the second case occurs
andK, = @, for somei, but we are already preparing an inductive step. Applying Lemma 7.11,
we have for every < 1:

P(/OT<X/LSK§(x),h>2ds <: and /OT((VLS[XO,KO]‘E(x),h>2
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+ iWE[Qi, Kol (x), h>2) ds > 81/20> < O(6vp)e?’® |
i=0

Since the second integral above is always larger fjab(’ K (x), h)? dt, the probability for it
to be smaller thas'/? is, by (B), bounded by)(16p)t—7e?/?°, This implies (replacing by
max{6v, 16}) that

P([ (VK@) 1) ds < <) < Op)t 7"/

Since forj = 1 we haveK, = Q; withi € {k,, ..., L—1}, we have shown (C) in this case. The
above reasoning is repeated for 2 and; = 3, by iterating the above argument. For example,
if K =[Q,[X° Q1] withiy, iy € {k.,...,L—1}, we apply Lemma 7.11 twice, showing
the first time that[ X°, Q;,]., h)? is unlikely to be small and then again to show th@t,, h)?

is also unlikely to be small (with other powers ©f which is what we wanted. Finally, since
every K used in (B) is inkC, at most 3 such invocations of Lemma 7.11 will be sufficient to
conclude that (C) holds. The proof of Theorem 7.3 is complete. 0

7.4 Estimates on the low-frequency derivatives (Proof of Proposition 5.3)

Having proven the crucial bound Theorem 7.1 on the reduced Malliavin matrix, we can now
proceed to prove Proposition 5.8¢., the smoothing properties of the dynamics in the low-
frequency part. For convenience, we restate it here.

Proposition 7.12 There exist exponents v > 0 such that for every € CZ(H), everyé € H”
and everyT > 0, one has

|E((DLp 0 @YEDLENE)|| < Crt™ (1 + I ¢l | (7.9)

forall t € (0,77.

Proof. The proof will use the integration by parts formula (6.4) together with Theorem 7.1.
Fix £ € H* andt > 0. In this proof, we omit the argumegtto gain legibility, but it will be
understood that the formulas do generally only hold if evaluated at somé{“. We extend

our phase space to includg @¢, V' and 2, ®! . We define a new stochastic procdgsby

vt = (9, 2,0 DO V)eH=HeR'"'aH ¢RI,

Applying the definitions of these processes, we seedtas defined by the autonomous SDE
given by

APt = — AD' dt + F() dt + QDY) dW (t)
dD ®' = —AD ®' dt + DF(®) D, d' dt + DQ@®') D, & dW (1) ,
AVt = V' AL dt — Vi DL F(®Y) dt — VD QL (®") dW(t)

L-1

+ VY (DL (@Y)? dt

1=0

dP,®, = —A 2,0} dt + D F ()2,®! dt + QL(P)* (V') dt
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+ DLQL(P") D,P| dWL(1) .
This expression will be written in the short form
AUt = — AU dt + F(UY) dt + Q") dW (1) ,

with ¥* € H anddV (¢) the cylindrical Wiener process dH. It can easily be verified that this
equation satisfies assumptiéid of Proposition 6.1. We consider again the stochastic process
v' € H defined in (6.10). It is clear from Lemma 6.5 thatsatisfiesA2. With this particular
choice ofv, the first component o, V' (the one inH) is equal toZ,®} & 0.

We choose a functiop € CZ(H) and fix two indices, k € {0,..., L — 1}. Definep, . :
H—R by

-1
Gin(Th) = Z <P(‘I)t)<(9v<bf)_l)i,j(DL‘I)Dj,k ,

j=0
where the inverse has to be understood as the inverse of a square matrix. By Theorgm 7.1,

satisfies the assumptions of Proposition 6.1. A simple computation gives forleweR” the
identity:

Dii(2)2,9'h = DLp(@) (2, PLh)(Zo@1) ™), (DLDL);
+ (@) (2.2 (27PN Z,2L) ) (DLDL)
+ (@) (ZoDL D), ;(Zo®L) ) (7.10)

where summation overis implicit. We now apply the integration by parts formula in the form
of Proposition 6.1. This gives the identity

E(D@(V)2,0'h) = E(fu(v) [ (oh, dW(s)))
Substituting (7.10), we find
E(DLo(@)(2,®L h)(2,81)7Y), (DL®}),, ) =
— E(p(@)((2,2) (23 1)(2,®1) ), (D)) ;)
— E(p(@) (2, D ®)h), (2.9 7);)
FE(p@)(20) ), (D0, [ (h W (9)

The summation over the indexs implicit in every term. We now choose= ¢; and sum over
the index:i. The left-hand side is then equal to

E((Dp(@)) DL®e)

which is precisely the expression we want to bound. The right-hand side can be bounded in
terms of||o|| .~ and ofE((Z,®!)~*) (at worst). The other factors are all given by components

of 2,¥" and can therefore be bounded by means of Theorem 8.9. Therefore, (7.9) follows. The
proof of Proposition 7.12 is complete. O
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8 Existence Theorems

In this section, we prove existence theorems for several PDE’s and SDE'’s, in particular we prove
Proposition 5.1 and Lemma 5.4. Much of the material here relies on well-known techniques,
but we include the details for completeness.

We consider again the problem

dd' = — AD' dt + F(®') dt + Q(DY) dW (1) , (8.1)

with ®° = ¢ given. The initial conditiort will be taken in one of the Hilbert spacést’. We
will show that, after some time, the solution lies in some smaller Hilbert space. Note that we
are working here with theutoffequations, but we omit the index

We will of course require that all stochastic processes are predictable. This means that if we
write LP(2, %), with  some Banach space of functions of the interval]], we really mean
that the only functions we consider are those that are measurable with respect to the predictable
o-field when considered as functions o¥ex [0, T7.

We first state precisely what is known about the ingredients of (8.1).

Lemma 8.1 The following properties hold fod, F and Q.

P1 The spacée/H is a real separable Hilbert space andl : D(A) — H is a self-adjoint
strictly positive operator.

P2 The mapF' : H — H has bounded derivatives of all orders.

P3 For everyy > 0, F mapsH” into itself. Furthermore, there exists a constant> 0
independent of and constantg’z, such thatF' satisfies the bounds

I1E@)y < Cray(L+[l2]5) (8.22)
I1F(@) = FW)lly < Cryllz =yl (1 + [lzlly + llyll,)" (8.2b)

for all z andy in H".

P4 There exists amx > 0 such that for every, 21,2, € H the mapQ : H — Z(H,H)
satisfies

142 Q@)Ips < €1 14°7*5(Q(1) = Q(@2)llps < Cllas — ]|

where|| - |4s denotes the Hilbert-Schmidt norm.
P5 The derivative of) satisfies

[A*(DQ(x))hllws < CIA] (8.3)

for everyz, h € H.
P6 The derivative of satisfies

[(DF(@))yll, < CQA+ llzll)yll

for everyz,y € ‘H".
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Proof. The pointsP1, P2 are obvious. The poire4 follows from the definition (1.6) of) and
the construction of), in (4.1). To proveP3, recall that the map’ = F, of the GL equation is
of the type

Fy(u) = x(llull/Ba) P(u) ,
with P some polynomial ang € C5°(R). The key point is to notice that the estimate

lwolly < Cy(llull vlly + lully vl

holds for everyy > 0, whereuv denotes the multiplication of two functions. In particular, we
have
lu”lly < Cllullyllul™"

which, together with the fact thathas compact support, shows (8.2a). This also shows that the
derivatives ofF’ in H” are polynomially bounded and so (8.2b) hol@& follows by the same

argument.
The pointP5immediately follows from the fact that the image of the oper&fof)(z))h is
contained irf{, for everyz,h € H. |

Remark 8.2 The conditionP1implies thate=4* is an analytic semigroup of contraction oper-
ators onH. We will use repeatedly the bound

—At

le™ %, < Gyt lz|] -

~

We begin the study of (8.1) by considering the equation for the mild solution

U(t, & w) = e_At§+/t e_A(t_S)F(\I/(S,f,w)) ds
0 (8.4)

N /Ot efA(t*S)Q(\I’(S, &,w)) dW (s,w) .

The study of this equation is in several steps. We will consider first the noise term, then the
equation for a fixed instance aof and finally prove existence and bounds.
We need some more notation:

Definition 8.3 Let H* be as above the domain df* with the graph norm. We fix, once and
for all, a maximal timel". We denote by the spac€ ([0, 1], H) equipped with the norm

yllre = sup [[y(®)l|a -
te[0,T7]

We write H . instead ofH?. .

8.1 The noise term

Lety € L?(2, Hy). (One should think of as beingy(t) = ®'.) The noise term in (8.4) will be
studied as a function or?I€2, H). It is given by the functior?Z defined as

(ZE)E) =t [ e AIQUE) DV (5,) ®5)
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We will show thatZ(y) is in LP(€2, H$) wheny is in LP(2, H;). The natural norm here is the
L? norm defined by

1/p
120, = (E. S0 1ZOMIE)

Proposition 8.4 Let H, A and () be as above and assurRd and P4 are satisfied. Then, for
everyp > 1 and everyl’ < T, one has

12l < Cp,T7° . (8.6)
Proof. Choose an elemepte LP(Q2, H ). In the sequel, we will consideras a function over
[0, 7] x 2 and we will not write explicitly the dependence on

In order to get bounds o#, we use the factorization formula and the Young inequality.
Choosey € (1/p, 1/8). The factorization formula [DPZ92b] then gives the equality

t s
(ZWNE = C [ =y e [ (s =) e Q) aw () ds
JO 0
SinceA commutes withe=4¢, the Holder inequality leads to

||(Z(y))(t)||§ (8.7)
— CH/O (t — 5)7—16—14(15—5) /05(S B 7n)—'yAOée—A(s—r)Q(y(r)) dW(T) dSHp

t s
<o [ [ s =name que) aw )| ds,
0 0
with v = (py — 1)/(p — 1). For the next bound we need the following result:

Lemma 8.5 [DPZ92b, Thm. 7.2]. Let — U” be an arbitrary predictable??(H)-valued
process. Then, for evepy> 2, there exists a constant such that

E(H/O wraw )| < CE(/OS 10 s dr)””
This lemma, the Young inequality applied to (8.7), &above imply
12l = E( sup | / L A2 A9y () W (s)|)
<CrE | i / - P AAIQy(r) aW ()| ds
<CrE | T( / (s — 1) AR A IQUy()) s dr)” ds
< OT'E [ ([ = ry A5 AP 435 Q(y ) gir) ds

T s o o /2
<CTE [ ([ (s =y &4 Q(uy0) [fsdr) ™" ds
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(T o p/2 T
< CT (/0 s 3/4ds) E/o | A**2Q(y(s)) P ds

T
< oT( / —21-3/4 ds)p/ z (8.8)
0

Thus, we have shown (8.6) fpr> 16. Since we are working in a probability space the case of
p > 1 follows. This completes the proof of Proposition 8.4. |

8.2 A deterministic problem

The next step in our study of (8.4) is the analysis of the problem fizedinstance of the noise
w. Then (8.4) is of the form

h(t, €, 2) = e e+ /Ot e_A(t_S)F(h(s, &, 2))ds + z(t) ,

where we assume thate H$. One should think of this as an instanceZ{fP), but at this point
of our proof, the necessary bounds are not yet available.

We find it more convenient to study instead /ofthe quantityg defined byg(t, &, 2) =
h(t,&, z) — z(t). Theng satisfies

g(t, &, 2) = e M¢ + /Ot e_A(t_"’ﬁ)F(g(s7 £, 2)+ z(s)) ds . (8.9)

We consider the solution (assuming it exists) as a map from the initial conditeomd the
deterministic noise term. More precisely, we define

G(ga Z)t = g(tv 57 Z) .
This is a map defined o x H$. Clearly, (8.9) reads:

G(&, 2), = e Me+ /Ot e AIE(G(E, 2)s + 2(5)) ds . (8.10)

To formulate the bounds afi, we need some more spaces that take into account the regu-
larizing effect of the semigroup— e~*.

Definition 8.6 For~ > 0 the spaceg] are defined as the closures@{0, 7], H”) under the
norm

lyllgy, = sup t7lly(@)Il, + sup [ly@®) -
t€(0,T] te[0,T]

Note that
lyllgy < Cyrllyllwg -
With these definitions, one has:
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Proposition 8.7 Assume the conditiotsl-P4 are satisfied. Assungec H andz € HZ. Then,
there exists a magr : H x H$ — H, solving (8.10). One has the following bounds:

(A) If £ € HY with~ < « one has for ever§” > 0 the bound
IGE g < Co+ €l + 1zl - (8.11)
(B) If £ € 'H one has for ever§” > 0 the bound
IGE, gy < Cr(L+[1€]l + [12llg) - (8.12)
Before we start with the proof proper we note the following regularizing bound: Define
NHE) = /Ot e M9 f(s) ds . (8.13)
Then one has:
Lemma 8.8 For everye € [0, 1) and everyy > ¢ there is a constant’. ., such that
INFllgy < ConTlFllgy -
forall f € G| °.

Proof. We start with
t/2 A t N
IWH@I, < [ ) ds + [ 1474072 ()] ds

< /Ot/z(t —8) £ ds + /t/:(t = 8) I () ds

IN

t/2 t
_ Q)Y _ Q)€Y .
= WSyt [ 6= 55 gy s
1— l1—ege—
< O fllgy< + CE 7 flgy <

Thereforef™||(N f)@)]l,, < CT| fllgy-e- Similarly, we have

t
VDO < [Nl f(s)] ds < Ctflgy-
Combining the two inequalities, the result follows. 0
Proof of Proposition 8.7 We first choose an initial conditiof € H” and a functior: € H,..

The local existencg of the solutions i is a~well-known result. Thus there exists, for a
possibly small timé&” > 0, a functionu € C([0, T, H") satisfying

u(t) = e ¢ + /Dt e A F(u(s) + 2(s)) ds .
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In order to get am priori bound on||u(t)||, we use assumptioR3 and find

t
@)l < l€ll, + Cre [0+ fhus) + (s)],) ds
t
< CA+ [IElly + llzllg) + Cm/O [u(s)[] ds .
By Gronwall’'s lemma we get for < T,

[u@lly < Cr(L+[IElly + [12llg) - (8.14)

Note that (8.14) tells us that if the initial conditignis in " and if z is in H7.,, thenu(t)
is, for small enougtt, again inH” with the above bound. Therefore, we can iterate the above
reasoning and show the global existence of the solutions up taftiméth bounds. Thus is
well-defined and satisfies the bound (8.11).

We turn to the proof of the estimate (8.12). Define fo¢ H . the mapM , by

(M.(2))(t) = e ¢ + /Ot e A F(2(s) + 2(s)) ds . (8.15)

Taking¢ € H we see from (8.14) withy = 0 that there exists a fixed pointof M, which
satisfies
[ullz, = sup [u@) < Cr(1+ (€] + lIzll2,) -
t€[0,T]

Assume next that € H$ and hence fortiori z € G$. Then, byP3one has
1F(@ + 2)lg; < CO+[lzllgy +l12llg3) -

Sinceu is a fixed point and (8.15) contains a term of the form of (8.13) we can apply Lemma 8.8
and obtain for everyy < o ande € [0, 1):

lullgz = IMlgy < CliEll + CTIF(u+ 2)lg;
< COllell + Cr(1+ ullgy + Ilzllgy) (8.16)

Thus, as long a§z||g, is finite, we can apply repeatedly (8.16) until reaching: «, and this
proves (8.12). The proof of Proposition 8.7 is complete. O

8.3 Stochastic differential equations in Hilbert spaces

Before we can start with the final steps of the proof of Proposition 5.1 we state in the next
subsection a general existence theorem for stochastic differential equations in Hilbert spaces.
The symbolH denotes a separable Hilbert space. We are interested in solutions to the SDE

dX' = (“AX! + N(t,w, XY + MY dt + B(t,w, X1 dW (?) , (8.17)

whereWV () is the cylindrical Wiener process on a separable Hilbert sféce We assume
B(t,w,X") : Hy — H is Hilbert-Schmidt. We will denote b{) the underlying probability
space and by.#, },~ the associated filtration.

The exact conditions spell out as follows:
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C1 The operato : D(A) — 'H is the generator of a strongly continuous semigrouflin

C2 There exists a constant > 0 such that for arbitrary:,y € H, ¢t > 0 andw € 2 the
estimates

IN(t,w,2) = N(t,w, )l + | Bt w, ) = Bt,w,y)llus < Cllz =yl .
IN(t,w, 2)|* + | B(t,w, 2)l[is < C*(A + [l2]%)

hold.

C3 Foreveryr, h € Handhy € H,, the stochastic processgs(:, -, x), h) and(B(-, -, x)ho, h)
are predictable.

C4 The H-valued stochastic procedd’ is predictable, has continuous sample paths, and
satisfies

sup E [[M'|P < o0,
te[0,T]

for everyT > 0 and everyp > 1.

C5 For arbitraryt > 0 andw € (2, the mapst — N(t,w, x) andz — B(t,w, x) are twice
continuously differentiable with their derivatives bounded by a constant independent of
t, z andw.

We have the following existence theorem.

Theorem 8.9 Assume thaf € H and thatC1 — C4 are satisfied.

— ForanyT > 0, there exists a mild solutiong of (8.17) Witth = &. This solution is
unique among thé{-valued processes satisfying

T 2
P(/ B dt<oo> ~1.
0

Furthermore, X, has a continuous version and is strongly Markov.
— For everyp > 1 and7 > 0, there exists a constant,  such that

E( SUIO]HXEHP) < Gor(1+ €17 - (8.18)

te[o,T

— If, in addition, C5 is satisfied, the mapping— Xg(w) has a.s. bounded partial deriva-
tives with respect to the initial conditiopn These derivatives satisfy the SDE’s obtained
by formally differentiating (8.17) with respect £0.

Proof. The proof of this theorem for the cagé’ = 0 can be found in [DPZ96]. The same
proof carries through for the case of non-vanishidgsatisfyingC4. O

8.4 Bounds on the cutoff dynamics (Proof of Proposition 5.1)

With the tools from stochastic analysis in place, we can now prove Proposition 5.1. We start
with the
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Proof of (A). In this case we identify the equation (8.17) with (4.2) and apply Theorem 8.9.
The conditionC1 of Theorem 8.9 is obviously true, and the conditi®8 is redundant in this
case. The conditio@2 is satisfied becaus€ and( of (8.17) satisfyP2-P4. Therefore, (8.18)
holds and hence we have shown (5.1a) for the case-of. In particular,®! exists and satisfies

Bew) = et [ IRy w)) ds

; (8.19)
+ [ e IQ@ye, ) V()
We can extend (5.1a) to arbitrayy< « as follows. We set as in (8.5),
t
(Z@)w) = [ e IQ@e, ) AV (s) (8.20)
By Proposition 8.4, we find that for gl > 1 one has
1/p
(E. sw lz@pOIz) <, ®21)
tel[0,T]
for all £&. From this, we conclude that, almost surely,
sup [[(Z(2,))(w)la < oo . (8.22)
te[0,T7]
Subtracting (8.20) from (8.19) we get
t
e, w) — (2@ ) = e e+ [ MIR(@y(E,w)) ds
0 (8.23)

= e ¢ 4 /0 te*A@*S)F(@;(g,w) — (2(2,)) (@) + (Z(®,)),(w)) ds .
Comparing (8.23) with (8.10) we see that, a.s.,

We now use: as a shorthand:
A1) = (Z(D4(6,))) (@) -

Assume now € H”. Note that by (8.22);(¢) isin H?. If v < «, we can apply Proposition 8.7
and from (8.11) we conclude that almost surely,

sup [|G(&, 2)lly < Cr(1+ €]l + sup |lz]l,) -
te[0,T] te[0,T7]
Finally, sincey < «, we find

E( sup [@49l17) < CE( sup [[Gi&. 20 ) + CE( sup (1= )
te[0,T7] te[0,T7] te[0,T7]



74 UNIQUENESS OF THEINVARIANT MEASURE

IA

Cry(1 4 11Y + CE( sup =) )
t€[0,17]
= C'T,p(l + Hé”w)p g (8.24)

A

where we applied (8.21) to get the last inequality. Thus, we have shown (5.1a) foxatl.
The fact that the solution is strong+f > 1 is an immediate consequence of [Lun95, Lemma
4.1.6] and [DPZ92b, Thm. 5.29].

Proof of (B). This bound can be shown in a similar way, using the bound (8.12) of Proposi-
tion 8.7: Take& € H. By the above, we know that there exists a solution to (8.19) satisfying the
bound (5.1b) withy = 0. We definez(t) andG(&, z), as above. But now we apply the bound
(8.12) of Proposition 8.7 and we conclude that almost surely,

sup t*|G(E, 2)[la < Cr(1 + [I]] + sup [[z][a) -
t€[0,T] t€[0,71]

Following a procedure similar to (8.24), we conclude that (5.1b) holds.

Proof of (C). The existence of the partial derivatives follows from Theorem 8.9. To show the
bound, choos¢ € H andh € H with ||2|| = 1, and define the proceds = (D®!())h. Itis
by Theorem 8.9 a mild solution to the equation

AV = — AW dt + ((DF o ®,)(€)W") dt + ((DQ o L) (E)W") dW (t) . (8.25)

By P3 andP5, this equation satisfies conditio@d—-C3 of Theorem 8.9, so we can apply it to
get the desired bound (5.1c). (The constant term drops since the problem is lihéar in

Proof of (D). Chooseh € 'H and¢ € ‘H® and define as abové! = (Dd)f](f))h, which is the
mild solution to (8.25) with initial conditiork. We write this as

W= et [ (DF o 1)) d
0
-I—/O e_A(t—S)((DQOQDZ)(g)\IJS) AW (s)
=S+ 5+ S5

The termS! satisfies
sup t*[|Silla < CrllAll . (8.26)
t€(0,77]

The termSj is very similar to what is found in (8.5), wit@(y(s)) replaced by DQ o ®3).
Repeating the steps of (8.8) for a sufficiently laggeve obtain now withy = i somey > 0
and writing X* = (DQ o ®%)(£)V*:

e sup S5 = E( (sup| [ Averaxaws))

tefo0,T 0<t<T

< CT“E/O H/o (s —r) VA% A X7 dW(T)Hp ds
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T s
< CT“E/ (/ (s — 7")’2”’HAae’A(S’T))(""Hasdr)p/2 ds
0 0
T s
< C’T“E/ (/ (s — 1) 2 A X" |2 dr)p/2 ds
0 0
T _ /2 T
<CT“/ 2 ds)" E/ ACX*|Pod
<Cre( [ s7ds)E | ATX0 s ds
T
< CTHE [ A%(DQ o @3V [fys ds
0
We now useP5, i.e., (8.3) and then (5.1c) and get
T
E sup IS5z < CTH/E [ WP ds < CT ) (8.27)
t€[0,T7] 0
To treat the ternt?, we fix a realizationw € © of the noise and use Lemma 8.8. This gives

fore € [0, 1) the bound
sup S5, < CT Sup 7 [(DF o ©,) (W],

te(0,T te(0,T

By P6, this leads to the bound, a.s.,
sup 7|55, < Cr(1+ sup |124(©), - ) sup £V
te(0,

te(0,77]

Taking expectations we have

p —€
E sup #7||S5[? < C’pE<(1+t63(39]||¢2(§)||7_5> Sup to )p||\1ft||§_e> :

te(0,7]

By the Schwarz inequality and (5.1a) we get

e 1/2
E sup 7S5l < Crpl1+ [1€I1-)(E sup 079 W2 ) ™. (8.28)

(0,77
Sincel’ = (D®!(£))h = Sf + S5 + S5, combining (8.26)—(8.28) leads to
E sup t™7[|(D2,(€))h]}
t€(0,T]

. 1/2
< Crpll AP + Crp(1 + |I£H§_5)(E sup t072 || (DRL()) A2

Thus, we have gainedin regularity. Choosing =  and iterating sufficiently many times we
obtain (5.1d) for sufficiently large. The general case then follows from théltier inequality.

Proof of (E). We estimate this expression by

44 — el < [IF@I, ds+ | [ ooy aws)|

The first term can be bounded by combining (5.1b) B3d The second term is bounded by
Proposition 8.4.

The proof Proposition 5.1 is complete.
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8.5 Bounds on the off-diagonal terms
Here, we prove Lemma 5.4. This is very similar to the proof of (D) of Proposition 5.1.

Proof. We fix T > 0 andp > 1. We start with (5.5b). Recall that here we do not write the
cutoff p. We choosér € Hy and{ € H. The equation fol® = (Dy®; (€))his :

- /0 T AN ((DRL 0 ®))(E)(Dud (©)h) ds’

+ [ A((DQUo 8O (Dud” (©)h) AW ()
=R+ R;.

SinceDF = DF, is bounded we get

IR < € [ IO @)l ds' < Cs sup |(Dad” @)h] -

s'€[0,s

Using (5.1c), this leads to

E sup||Ri[|” < CPPE sup [(Da®* ()R] < Crpt?||]” .

s€[0,t] s€[0,t]

The termR; is bounded exactly as in (8.27). Combining the bounds, (5.5b) follows.
SinceQy is constant, see (4.1), we get f&f = (D ®,(£))h andh € H,:

T — /0 T M (DFy o 8 ()DL (©)h) ds'

This is bounded likg?{ and leads to (5.5a). This completes the proof of Lemma 5.4. O

8.6 Proof of Proposition 2.3

Here we point out where to find the general results on (1.7) which we stated in Proposition 2.3.
Note that these are bounds on the fimithoutcutoff .

Proof of Proposition 2.3.There are many ways to prove this. To make things simple, without
getting the best estimate possible, we note that a bountt iceln be found in [Cer99, Prop. 3.2].
To get from L to H, we note that € H and we use (1.7) in its integral form. The teem*‘¢
is bounded irf, while the non-linear ternjy e=4¢==) F(®3(¢)) ds can be bounded by using a
version of Lemma 8.8. Finally, the noise term is bounded by Proposition 8.4.

Furthermore, because of the compactness of the semigroup generated isypossible to
show [DPZ96, Thm. 6.3.5] that an invariant measure exists. 0
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V.  Exponential Mixing for a Stochastic PDE
Driven by Degenerate Noise

Abstract

We study stochastic partial differential equations of the reaction-diffusion type. We show that,
even if the forcing is very degeneraieehas not full rank), one has exponential convergence
towards the invariant measure. The convergence takes place in the topology induced by a
weighted variation norm and uses a kind of (uniform) Doeblin condition.

1 Model and Result

We consider the stochastic partial differential equation given by

du = Qfudt — P(u)dt + QdW(t),  ue WE?(0,1]) . (SGL)

per

In this equationP is a polynomial of odd degree with positive leading coefficient anddegs,
dW is the cylindrical Wiener process dff = Wé}ef)([o, 1]), and@Q : H — 'H is a compact
operator which is diagonal in the trigopnometric basis. The syml@[0, 1] denotes the spatial
variable. Further conditions on the spectruntoivill be made precise below.

In a recent paper [EHO1b], to which we also refer for further details about the model, it was
shown that this equation possesses a unique invariant measure and satisfies the Strong Feller
property. However, the question of the rate of convergence towards the invariant measure was
left open. The aim of this paper is to show that this rate is exponential.

There is a fair amount of very recent literature about closely related questions, mainly con-
cerning ergodic properties of the 2D Navier-Stokes equation. To the author’s knowledge, the
main results are exposed in the works of Kuksin and Shirikyan [KS00, KS01], Bricmont, Kupi-
ainen and Lefevere [BKLOOc, BKLOOb], and E, Mattingly and Sinai [EMSO01, Mat01], although
the problem goes back to Flandoli and Maslowski [FM95]. The main differences between the
model exposed here and the above papers is that we want to consider a situation winestathe
ble modes ar@otforced, whereas the forcing only acts onto the stable modes and is transmitted
to the whole system through the nonlinearity. From this point of view, we are in a hypoelliptic
situation where rmander-type conditions apply 67, Hr85], as opposed to the essentially
elliptic situation where the unstable modes are all forced and the (infinitely many) other modes
are stabilized by the linear part of the equation.

Returning to the model (SGL), we denotedaythe eigenvalue aof) corresponding to thith
trigonometric function (ordered in such a way thkat- 0). We make the following assumption
on theg:

Assumption 1.1 There exist constants. > 0, C; > 0,Cy > 0, « > 2 andg € (o — 1/8,a]
such that
Chk™2* < g, < Cok™%, fork > k,. (1.1)

There are no assumptions gnfor & < k,, in particular one may hawg, = 0 in that region.
Furthermorek, can be chosen arbitrarily large.
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We denote byb,(u) the solution of (SGL) at timéwith initial conditionu € H. If $; exists
and is sufficiently regular, one can define the semigrBupcting on bounded functionsand
the semigroup! acting on finite measurgsby

(P'o)u) =E((po®)),  (Piu)(A) =E((nod;")(A)) .

In a recent paper [EHO1b], to which we also refer for further details about the model, it was
shown that the above model satisfies the following.

Theorem 1.2 Under Assumption 1.1, the solution of (SGL) defines a unique stochastic flow
®, on H, thus also defining a Markov semigro®. The semigroupP! is Strong Feller and
open set irreducible in arbitrarily short time. As a consequence, the semigPd@eting on
measures possesses a unigue invariant measuté.on

Recall that a semigroup is said “open set irreducible in arbitrarily short time” if the proba-
bility of reaching a given open set in a given time is always strictly positive.

We denote by, the unique invariant probability measure of Theorem 1.2. We will show in
this paper that for every probability measurewe haveP!;, — pu, and that this convergence
takes place with an exponential rate (in time). More precisely, we introduce, for a given (pos-
sibly unbounded) Borel functiolr : H — [1, o], the weighted variational norndefined on
every signed Borel measureby

Il = [ V@ pildn) + [ Vie)u-(do).,

wherep... denotes the positive (resp. negative) pa.o¥WhenV (z) = 1, we recover the usual
variational norm which we denote [y ||. We also introduce the family of nornis ||, onH
defined by

[l = [[L7]]

whereL is the differential operator — 97 and|| - || is the usual norm oftt, i.e.

1
lull? = [ (ul? + 10cul?) de .
The exact formulation of our convergence result is

Theorem 1.3 There exists a constant> 0 such that for every > 1, everyy < «a, and every
probability measure; onH, one has

1P — plly,, < Ce™,  with V (u) = [Jufl? + 1,

for everyt > 1. The constant’ is independent of the probability measure

In the sequel, we will denote by the Markov chain obtained by sampling the solution of
(SGL) at integer times and by (z, -) the corresponding transition probabilities. Theorem 1.3
Is a consequence of the following features of the model (SGL).
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A. We construct a sék” having the property that there exists a probability measwaed a
constan® > 0 such thatP(z, -) > o v(-) for everyz € K. This means thak’ behaves
“almost” like an atom for the Markov chai. This is shown to be a consequence of
the Strong Feller property and the irreducibility of the Markov semigroup associated to
(SGL).

B. The dynamics has very strong contraction properties in the sense that it reaches some
compact set very quickly. In particular, one can bound uniformly from below the transi-
tion probabilities to a sek’ satisfying propertyA.

These conditions yield some strong Doeblin condition and thus lead to exponential conver-
gence results. The intuitive reason behind this is that, for any two initial measures, their image
underP, has a common part, the amount of which can be bounded uniformly from below and
cancels out. This will be clarified in the proof of Proposition 2.1 below.

The remainder of the paper is organized as follows. In Section 2, we show how to obtain
Theorem 1.3 from the above properties. The proof will be strongly reminiscent of the standard
proof of the Perron-Frobenius theorem. In Section 3 we then show the contraction properties of
the dynamics and in Section 4 we show that every compact set has the praperty
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2 A Variant of the Perron-Frobenius Theorem

The following proposition shows, reformulated in a more rigorous way, why the propArties
andB. yield exponential convergence results towards the invariant measure.

Proposition 2.1 Let ¥ be a Markov chain on a measurable spatand let¥ satisfy the fol-
lowing properties:

a. There exist a measurable s&t a positive constant and a probability measure, such
that for every measurable sdtand everyr € K, one hasP(x, A) > J v.(A).

b. There exists a constant > 0 such thatP(x, K) > ¢’ for everyz € X.

ThenW¥ has a unique invariant measuyfe. and one has for every probability measurahe
estimatel| P — pu.|| < 2(1 — 68") /2,

Proof. The first observation we make is that for every probability measoree has by property
a,

(P)(K) = [ P, ) puldr) = 9

As a consequence of this and of propdstyone has for every measurable gsethe bound

(PHOA) 2 [ P, 4) (Pupa)(dr) 2 65v.(4) (2.1)
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Define the constart = §¢’. An immediate consequence of (2.1) is that for any probability
measure., one has
[P —evill =1 —¢.
Now take any two probability measurgsandyr. Denote byy.. the positive (resp. negative) part
of u — v. Sincep andv are probability measures, one Has | = ||n—|| = A, say. Then, since
P. preserves probability, one has
1P — Pivll = P2y — Pin-|l < IPins — Aewi]| + | Pin- — Aew]]

<2001 -8 =0 -9)fu—v].

This completes the proof of Proposition 2.1. 0
Theorem 1.3 is then an easy consequence of the following lemmas.

Lemma 2.2 For everyy < «, everyt > 0, and everyp > 1, there exists a constaqt, ,,, such
that for every finite measugeonH one has

IP:ullv,, < Copalliall (2.2)
with L the semigroup acting on measures solving (SGL).

Lemma 2.3 For every compact sét C H, there exists a probability measurgand a constant
0 > 0 such thatP(z, -) > dv.(-) foreveryz € K.

Proof of Theorem 1.3Fix once and for aly < « andp > 1. By Lemma 2.2, there exist
constants” ando such that the sek’ = {z € H | ||z||, < C'} satisfiesP(z, K) > ¢ for every
x € 'H. By Lemma 2.3, we can apply Proposition 2.1 to find

P2 = pll < 272,

for some)\ > 0 and forn any integer. SincéP! preserves positivity and probability, one
immediately gets the same estimate for arbitrary real times. By Lemma 2.2 and the invariance
of u., this yields for some constant,

1P =l < Ce™™

The proof of Theorem 1.3 is complete. 0

Remark 2.4 Writing V' instead ofV/,,, condition (2.2) is equivalent to the statement that
E.V(®) < C forall z € H. Itis also possible to achieve exponential convergence results
if this condition is replaced by the weaker condition that

cV(x) forxeH\ K,
Erv@)g{ A forx e K,

with ¢ € (0,1), A > 0 and K some compact set. The proof is somewhat lengthy and so we
do not give it here. The interested reader is referred to [MT94, RBTO01]. The difference in the
results is that one gets an estimate of the type

IPe = iy < Ce™ Ml -

So strong convergence towards the invariant measure holds for measures with figiteorm
and not necessarily for every probability measure.

(2.3)

The remainder of the paper is devoted to the proof of Lemmas 2.2 and 2.3.
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3 Contraction Properties of the Dynamics

This section is devoted to the proof of Lemma 2.2. We reformulate it in a more convenient way
as

Proposition 3.1 For everyp > 1, everyy < «, and every timg > 0, there is a constant
Cp.~ > 0such that, for every € 'H, one has

E(H(Dt(x)Hz) < Cp,t,v . (3.1)

Proof. We define the linear operatdr= 1 — 02 and the stochastic convolution

t
Wi (t) = / e =9 O qW (s) .
0
With these notations, the solution of (SGL) reads
t
Oy(z) = e Mo — / e~ HE=9IP(D,(2)) ds + Wi(l) . (3.2)
0

In a first step, we show that for every couple of tindes ¢, < t,, there exists a consta@t, ;, .,
independent of the initial conditian such that

E( sup [u(@)ix) < Cpps - (3.3)
t1<s<to
For this purpose, we introduce the auxiliary procésgr) defined by, (x) = &,(x) — Wi(1).
We have fory, the equation

U, () = e Mo — /: e HEIP(W () + Wi(s)) ds

i.e.W,(x) can be interpreted pathwise as the solution of the PDE

B, = LU, — P(U, + Wi(t)), Yo=uz. (3.4)

If we denote by the degree oP (remember thag > 3), we have, thanks to the dissipativity of
L, the inequality
D%l _
Dt -
where the:; are some strictly positive constants aid / Dt denotes the left lower Dini deriva-
tive. An elementary computation allows to verify that the solutions of the ordinary differential
equationy = —cy? + f(t) (with positive initial condition andf (s) > 0) satisfy the inequality

c1 — || Wy|[{e + sl W) (3.5)

v < (aety 0+ [ sy ds, (36)

independently of the initial condition. Standard estimates on Gaussian processes show further-
more that for every > 0 and everyp > 1, there exists a consta@t, ; such that

E( sup [[WL(s)[[{=) < Cpy

s€[0,t]
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Combining this with (3.6), we get (3.3).

It remains to exploit the dissipativity of the linear operafoand the local boundedness of
the nonlinearity to get the desired bound (3.1). We writesfar [¢/2, ¢] the solution of (SGL)
as

B, (r) = e LD, 4 (x) — // e~ HIP (@, () dr + // eI AW () .
t/4 t/4

Note that the last term of this equality has the same probability distributiof s — ¢/4).
Since|le x| < 72| z||L~, we have (remember that= degP):

E( sup [|®,(z)[") < Cpy+ CoiE( sup [[Wi(s)]")

t/2<s<t t/4<s<3t/4

+ CE( sup ( ) (s — r)_l/QHP(CI)r(JS))HLoo dr>p>

t/2<s<t Jt/4

< Cpi+ CpE( sup [|@,(@)[[1%) < Cpr

t/4<s<t

In these inequalities, we used (3.3) and the fact B{aup.cj, 4 [[WL(s)[[?) is finite for every
v < a, everyt > 0 and everyp > 1. This technique can be iterated, using the fact that
le~E2 1412 < t71/2||z|,, until one obtains the desired estimate (3.1). The proof of Proposi-
tion 3.1 is complete. 0

4 Strong Feller Chains and Small Sets

The aim of this section is to show that a sufficient condition for the existence of sets with the
propertya. of Proposition 2.1 is that the Markov chain is open set irreducible and has the Strong
Feller property.
We follow closely [MT94] in our definitions. The main difference with their results is that
we drop the assumption of local compactness of the topological base space and that our esti-
mates hold globally with respect to the initial condition. We will adopt the following notations:
The symbolX stands for an arbitrary Polish space,a complete, separable metric space.
The symbolb stands for a Markov chain o We denote byP(x, A) the transition probabilities
of ®. Them-step transition probabilities are denoted®y (z, A). The symbol#(X) stands
for the Borelo-field of X.

Definition 4.1 A set K € #(X) is calledsmallif there exists an integern. > 0, a probability
measurer on X, and a constant > 0 such thatP™(z, A) > dv(A) for everyx € K and every
A € B(X). If we want to emphasize the valueaf, we call a setn-small

With this definition, we reformulate Lemma 2.3 as

Theorem 4.2 If ® is irreducible and Strong Feller, every compact se2-small.

The main step towards the proof of Theorem 4.2 is to show the existence of small sets which
are sufficiently big to be “visible” by the dynamics. Recall that a4é$ said to beaccessible
if P(x, A) > 0 for everyz € X. One has,
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Proposition 4.3 If ® is irreducible and Strong Feller, there exist accessible small sets.

Proof of Theorem 4.2Recall that Doob’s theorem guarantees the existence of a probability
measureu, such that the transition probabilitig3(z, -) are all equivalent tq,. This is a
consequence of the Strong Feller property and the irreducibilidy. of

By Proposition 4.3 there exists a small sesuch thatuy(A) > 0. For everyz € X and
every arbitraryD € %(X), we then have

P (@, D) > /AP(Z/,D) P™(w, dy) = Pz, A) inf Py, D) 2 6P(z, Ap(D) ,

for somem > 0, > 0 and a probability measure Since, by the Strong Feller property, the
functionz — P(z, A) is continuous and, by the accessibility4fit is positive, there exists for
every compact set' C X a constant’ > 0 such that

inf P (x, D) > §'v(D) .
zeC
The proof of Theorem 4.2 is complete. O

The next subsection is devoted to the proof of Proposition 4.3.

4.1 Existence of accessible small sets

In this subsection, we will work with partitions &. We introduce the following notation: if
2 is a partition ofX, we denote by??(z) the (only) element of” that containsc. With this
notation, one has the following theorem, a proof of which can be feugith [Doo53, p. 344].

Theorem 4.4 (Basic Differentiation Theorem)Let (X,.#, 1) be a probability space and”?,
be an increasing sequence of finite measurable partitions sfich that ther-field generated
by U, &, is equal to.#. Letr be a probability measure oX which is absolutely continuous
with respect tq: with density functiork. Define the sequence of functidnsby

UZu(@) N
h(r) = 4 p( PGy D=0
0 if (2, (x)) = 0.

Then there exists a sé&t with x(N) = 0 such thatim,,_.. h,(z) = h(x) for everyz € X\ N.

This theorem is the main ingredient for the proof of Proposition 4.3.

The first point one notices is that X is a Polish space, one can explicitly construct a se-
quence?,, of partitions that generate the Borefield. Choose a sequenge; }:°, of elements
which are dense iX (the existence of such a sequence is guaranteed by the separabljty of
and a sequencg; 132, such that; > 0 and lim;_.,, e; = 0. Denote by3(z, r) the open ball

of radiusr and center:. We then define the seMZ (: > 1andj > 0) by

MZO =X y MZJ = B(Ii7€j) .
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S P (v, W)

Pn(w)

0
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X X
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Figure 2: Construction oD andE.
This defines an increasing sequence of finite partitiohsby &2, = vi,jgn{Mij} (v denotes

the refinement of partitions). We denote B, the o-field generated byJ,, &2,. Since every
open setS C X can be written as a countable union

S=U{M/ | M} c S},

the open sets belong 18, and sa%,, = #(X). This construction guarantees the applicability
of the Basic Differentiation Theorem to our situation. We are now ready to give the

Proof of Proposition 4.3.Let us denote by(x, y) a jointly measurable version of the densities
of P(x, -) with respect tQu.
We define for every, y € X the setsS, € %(X) andS; € %4(X) by

Se ={y € X|plz,y) > 3}, S ={zeX]|plx,y)>1i},
and the sef? € (X x X) by
5% ={(z,y) € X x X|p(z,y) > 5} .

SinceP(z,X) = 1 for everyz € X, one hasu(S,) > 0 for everyz and thereforg.:2(S?) =
Jx 10(Sz) duo(x) > 0, whereu2 = 1o x po. Define the subset® of X3 by

S? = {(x,y,2) € X3 | (v,y) € S*and (, z) € S*} . (4.1)

One has similarly3(S?) = [g2 10(S,) dud(z,y) > 0. Let us now define the set®,(z) as
above and define?,,(x,y) = Z,.(x) x Z,.(vy).

By Theorem 4.4 withy = p2 andv = p3|s2, there exists a2-null set N such that for
(z,y) € S*\ N one has

(8PN Z(x,y))
M (P )

Since on the other hangf(S®) > 0, there exist a triplew, v, w) and an integen such that
pa (2 (u,v)) > 0, i (Pn(v, w)) > 0, and

=1.

13(S* N P, 0)) = TPl 0)) (4.22)
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13(S2 0 P, 0)) 2 T Palv,w)) (4.2b)

This means tha$? covers simultaneously seven eights of the “surfaces” of both&e(s, v)
and &, (v, w). (See Figure 2 for an illustration of this construction.) As a consequence of
(4.2a), the set

D= {z € Zu(u) | po( S0 N Pu(v) = 30(Pu0))}

satisfieguo(D) > %uo(@n(u)). Similarly, the set
E = {z € Zy(w) | po(S: N Zu(v)) = 110(Pu(v))}

satisfiesuo(F) > %uo(@n(w)). On the other hand, one has by the definition&'acind D that
forx € Dandz € E, (4o(S, NS%) > %uo(@n(v)). Thus

P2 [ e p ) ) 2 (S0 8D 2 (), (43

for everyx € D and everyy € E. Defining a probability measure by settingy(I') =
oI N E)/ug(E), there exist® > 0 such that for every: € D, one hasP(z,I') > dv(I") and
thusD is small. Sinceuy(D) > 0, the proof of Proposition 4.3 is complete. |






V. Exponential Mixing Properties of Stochastic
PDEs Through Asymptotic Coupling

Abstract

We consider parabolic stochastic partial differential equations driven by white noise in time.
We prove exponential convergence of the transition probabilities towards a unique invariant
measure under suitable conditions. These conditions amount essentially to the fact that the
equation transmits the noise to all its determining modes. Several examples are investigated,
including some where the noise doest act on every determining mode directly.

1 Introduction

We are interested in the study of long-time asymptotics for parabolic stochastic partial differ-
ential equations. More precisely, the existence, uniqueness, and speed of convergence towards
the invariant measure for such systems is investigated. The general setting is that of a stochastic
PDE of the form

dr = Az dt + F(x)dt + Q dw(t) , z(0) = xq , (1.2)

wherezx belongs to some Hilbert spagé A is the generator of &,-semigroup o, F: H —
H is some nonlinearityy is the cylindrical Wiener process on some other Hilbert sp&cand
Q: W — H is a bounded operator. If the nonlinearityis sufficiently “nice”, there exists a
unique solutionz(t) to (1.1) (seee.g[DPZ92b]). In this paper, we investigate the asymptotic
stability of (1.1). We say that the solutions of (1.1) are asymptotically stable if there exists a
uniqueprobability measure.,, on H such that the laws of(t) converge tqu.., independently
of the initial conditionz,. We are interested in the situation where the asymptotic stability is a
consequence of the noisee(the deterministic equation = Az + F'(x) is not asymptotically
stable in the above sense), although the noise is weak, in the sense that the @riggofs
“small”.

The investigation of asymptotic behaviour for solutions of (1.1) goes back to the early eight-
ies (see for example [MS99] for an excellent review article or the monograph [DPZ96] for a
detailed exposition). Until recently, two approaches dominated the literature on this subject.
For the first approach, sometimes called the “dissipativity method”, one considers two solu-
tionsz(t) andy(t) of (1.1), corresponding to the same realization of the Wiener progdssgt
with different initial conditionsz, andy,. If A andF' are sufficiently dissipative|z(t) — y(t)||
converges td) for large times in some suitable sense. If this convergence is sufficiently fast
and uniform, it yields asymptotic stability results (see for example [DPZ92a]). Closely related
to this approach are the Lyapunov function techniques, developed for semilinear equations in
[Ich84]. The dissipativity method, as well as the Lyapunov function techniques, are limited by
the requirement that the deterministic equatior Az + F'(x) already shows stable behaviour.

The (linearly) unstable situations are covered by the second approach, to which we refer as
the “overlap method”. It consists in showing that the Markov transition semigroup associated
to (1.1) has the strong Feller property and is topologically irreducible. Then, provided that
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the equation (1.1) shows some dissipativity, arguments as developed in the monograph [MT94],
allow to bound the overlap between transition probabilities starting at two different initial points.
This in turn yields strong asymptotic stability properties. The main technical difficulty of this
approach is to show that the strong Feller property holds. This difficulty is usually mastered
either by studying the infinite-dimensional backward Kolmogorov equation associated to (1.1)
[DPZ91], or by showing that the Markov transition semigroup has good smoothing properties
[DPEZ95, Cer99]. This technique is limited by the requirement that the noise be sufficiently
non-degenerate. A typical requirement is that the rang@ abntainsthe domain of some
positive power of—A. To our knowledge, only one work [EHO1b, Hai01] shows the strong
Feller property for a stochastic PDE in a situation where the ranggisfnot dense irt{ (but

still of finite codimension).

Very recently, a third approach, to which we refer as the “coupling method”, emerged in
a series of papers on the 2D Navier-Stokes equation. (See [KS01, Mat01, MY01] and the
references in Section 6.) The main idea of these papers is to make a sgtittiagH; ¢
‘Hpy of the dynamics into a finite-dimensional, linearly unstable, low-frequency}and a
remaining infinite-dimensional stable p&tt;. An important assumption of} is then that the
range of() containsH . The spacé<{,, is chosen in such a way that the long-time asymptotics
of the dynamics is completely dominated by the behaviour of the low-frequency part. More
precisely, for any given realization (t) of the low-frequency part, the dynamics of the high-
frequency part: 5 (¢) will loose memory of its initial condition exponentially fast. On the low-
frequency part, in turn, the noise acts in a non-degenerate way. A clever coupling argument
allows to combine these two facts in order to obtain asymptotic stability results. The argument
consists in coupling two realizations of (1.1) in such a way that if the low-frequency parts
meet at some time, they remain equal for all times > 7. (Of course, one has to show
that 7 is finite with probability1.) In fact, this coupling method is very close to the Gibbsian
approach developed in [KS00, BKLOOb, EMSO01], which consisted in transforming the infinite-
dimensional Markovian system df to a finite-dimensional non-Markovian system #f} .

This finite-dimensional system was shown to have exponentially decaying memory and thus
techniques from statistical mechanics can be applied.

Loosely speaking, the coupling method combines the arguments of both the dissipativity
method (onH ) and the overlap method (oK ;). The coupling method thus yields a very
powerful approach to the problem of asymptotic stability of (1.1). The conditions of applica-
bility of this coupling method have been successively weakened in the aforementioned papers,
but the existing results always require, as we already mentioned, that the noise acts directly and
independently oreverydetermining mode of the equation. In this paper, we extend the cou-
pling method to problems which do not satisfy this condition. Our overall approach is similar
to the one exposed by Mattingly in [Mat01], and consequently some of our proofs are closely
related to the arguments exposed there. Our main new idea is to construct a coupling for which
the low-frequency parts of the dynamics do not actually meet at some finite time, but con-
verge exponentially fast towards each other. This “asymptotic coupling” is achieved through a
binding construction exposed in Section 2.3, which seems to be new and can in some cases be
implemented even in very degenerate situations.

In the following section, we illustrate the method of asymptotic coupling for a simple finite
dimensional problem.
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1.1 Atoy model
Consider the following system of stochastic differential equatiori®’in

dry = 2x1 + 29 — 25) dt + dw(t) , (1.2)
dry = 2x9 + 21 — x%) dt . '

This equation should be interpreted in the integral sense,wih(2 a Brownian motion. Ap-

plying Hormander’s condition [Er85, Nor86], it is easy to see that the transition probabilities

of (1.2) are smooth with respect to the Lebesgue measuR’orFurthermore, an easy con-

trollability argument shows that they have support everywhere and therefore are all mutually

equivalent. Since (1.2) also exhibits a strong drift towards the center of the phase space at large

amplitudes, it follows by standard arguments that (1.2) possesses a unique invariant mgasure

and that every initial condition is exponentially (in variation norm) attracted.by

The problem with this argument is that it heavily relies on the existence of some reference
measure (in this case the Lebesgue measure) which is equivalent to the transition probabilities.
In the infinite-dimensional setting, such a reference measure will usually not exist when the
noise is sufficiently degenerate. (For an account of some cases where such a reference measure
does exist in the infinite-dimensional case, see [MS99, EHO01b].) Furthermore, the fact that both
directions in (1.2) are linearly unstable prevents one from applying the coupling method as it is
presented in the previous section.

We will show that the invariant measure for (1.2) is unique, using a coupling construction
which pushes solutions together at an exponential rate. This construction is asymptotic, com-
pared to more conventional coupling constructions, which look for hitting times at which the
coupled dynamics actually meets.

Before we proceed, let us explain briefly what we mean by “coupling”. A coupling for (1.2)
is a processa((t), y(t)) € R* x R?, whose marginals:(t) andy(t) taken separately are both
solutions of (1.2) (but with different initial conditions). In general, one takes a me&sare
Q2 x Q, whose marginals are both equal to the Wiener meaaur@hen a coupling for (1.2)
can be constructed by drawing a pait ¢) € 2 x Q distributed according t& and solving the
equations

dry = 2z + x5 — :E?) dt + dw(t) , dy; = Q1 +y2 — yi’) dt + da(t) ,
dry = 2wy + 21 — 23)dt | dyy = (o +y1 — y3) dt . (1.3)

We will carefully choose the measuRein such a way that the quantityz — y|| converges
exponentially td) for large times. This then yields the uniqueness of the invariant measure for
(1.2).

Our main idea leading to the constructionRois to consider the following system Ri':

dry = (211 + 29 — 2°) dt + dw(t) ,

dry = (2xy + 21 — 23) dt

dy1 = 1 + yo — ¥3) dt + dw(t) + G(x1, T2, y1, yo) dt
dys = Qua +y1 — y3) dt

(1.4)
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wheredw denotes twice the same realization of the Wiener process. We see that this equation
is the same as (1.3) with defined by

20) =)+ [ G, 22(5), 1a(5), 12(s)) ds (L5)

The noises € Q is distributed according to some measWevhich is in general not equal to
the Wiener measurd/. Therefore, (1.4) does not yet define a coupling for (1.2¥7 I§ small
in the sense that the quantity

[ NG @), 225,116, 1) ds (1.6)

is bounded with sufficiently high probability, then the measukeandW are equivalent. In
this case, it is possible to construct a meadu@ 2 x 2 whose marginals aré/, with the
important property that there exists a random tinveith P(7 < oo) = 1 such that the solutions
of the coupled system satisfy (1.4) for times 7.

In view of the above, we have reduced the problem to finding a functicuch that the
solutions of (1.4) satisfyy(t) — z(t)|| — 0 for t — oo and (1.6) is bounded. We introduce the
difference procesgs = y — z, and we write

01 =201+ 02 — 012} + T1y1 + yi) + Glz,y) (1.7a)
00 =209+ 01 — gg(xg + Toys + yg) ) (1.7b)

It is easy to find a functiod? such thatp; — 0, but this does not yet mean that will go to
zero. A closer look at (1.7b) shows that if we could foggeto be very close te-3p,, (1.7b)
could be written as
02 = —02+€— 0225+ Toyp +y3)
which is asymptotically stable. Introduce the functios o; + 30.. We then have
é = ( . ) + G('rlv T2, Y1, y2) )

with (...) an expression of the orddp||(1 + ||z||* + [|y/|*). Now we can of course choose
G = —(...) — 2¢. This way, the equation fof becomeg = —2¢ and we have the solution
¢(t) = ¢(0)e~2t. Plugging this into (1.7b), we get

02 = —02 + C(0)e ™ — 0o(a3 + 2o2y2 + ¥3) -
We thus have the estimate
2] < le2(0)]e™" + [C(O)] e .
Finally, o, is estimated by using the definition ¢fand we get
o1 < le2(0)]e™ + 4|¢(0)]e™*" .

This shows that, witliz chosen this way, there exists a const@rguch that

z(t) — y(@)]| < Cllz(0) — y(0)[le™",
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for almost every realization of the noise. Since typical realizationg(fdo not grow faster

than linearly,GG is also of the ordee™*, with at most a polynomial factor inmultiplying the
exponential. The main result of this paper, Theorem 4.1, shows that the above construction
implies the existence and uniqueness of an invariant probability meastwe the problem at

hand. Furthermore, it shows that the transition probabilities converge exponentially fast towards
i1, in the Vasektan norm (the dual norm to the Lipschitz norm on functions).

This concludes our presentation of the toy model. For a more precise statement, the reader
is encouraged to actually check that the above construction allows to verify the assumptions
stated in Section 5.

The remainder of this paper is organized as follows. In Section 2, we give the precise
definitions for the type of coupling we will consider. In Section 3, we state the properties of
the coupling that are required for our purpose. In Section 4, we prove the abstract formulation
of our main ergodic theorem. In Section 5, this abstract theorem is then specialized to the case
of stochastic differential equations. In Section 6 finally, we present several examples where our
construction applies, although the noise does not act directly on every determining mode of the
equation.
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2 The Coupling Construction

In this section, we explain our coupling construction. Before we start with the actual definitions
of the various objects appearing in the construction, we fix our notations.

2.1 Notations

If 1 is a measure on a measurable spXcgn the sequel, we will always consider Pofish
spaces) ang : X — Y is a measurable map, we denote By: the measure oY defined by
(F* ) (A) = u(f~(A)). For example, ifl is a projection on one component of a product space,
IT*;, denotes the marginal ¢f on this component. If a natural reference measure is given on
the current space, we denote Dy the density ofu with respect to the reference measure.

We define for any two measurgsandv the measureg A v andp\ v. If a common reference
measure is given, these operations act on densities like

(D(u A v))(x) = min{Du(z) , Du(x)} ,
(D(u\ 1))(x) = max{Du(x) — Di(z), 0} .

It immediately follows thaf: = (u A v)+ (1 \ v) for any two measures andv. We will use the
equivalent notationg < v andv > p to say thaj: A v = p holds. One can check the following
relations:

Flunv)< ffunfv,

8i.e.complete, separable, and metric
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ffu\v)> f'u\fv.

Equalities hold iff is injective.

For a given topological space we denote by (X) the space of all finite signed Borel
measures oX. We denote by#; (X) the set of all probability measures &n For i € . (X),
we denote byj|u/|| its total variation norm (which is simply its massifhas a sign).

2.2 Definition of coupling

In this section, and until the end of the paper, we will often consider fan@igef measures
indexed by elementg € Y, with Y some Polish space. One should thinkyodis the initial
condition of a Markov chain oY and of Q, either as its transition probabilities, or as the
measure on pathspace obtained by starting fgoriVe will always assume that the functions
y — Q,(A) are measurable for every Borel sktlf Q, is a family of measures ori* andR,, is

a family of measures ov”, a family of measuresRQ), on Y+ = Y™ x Y™ can be defined
on cylindrical sets in a natural way by

(RQ),(4 x B) = [ R..(B)Q,(d2), 1)

whereA C Y", B C Y™, andz, denotes theth component of.

We consider a discrete-time Markovian random dynamical system (RD&) a Polish
spaceX with the following structure. There exists a “one-step” probability sp&ceA, P) and
® is considered as a jointly measurable ndag(X, 2) — X. The iterated map$™ : (X, ") —
X with n € N are constructed recursively by

O™ (x, Wi, .., wp) = P(P" (Wi, ..., wWalt), Wn)

This construction gives rise to a Markov chainXalso denoted by) with one-step transition
probabilities

P, = ®&(x,-)"P.
The n-step transition probabilities will be denoted BY. Our main object of study will be
the family of measures on pathspace generated.bfake a sequencgwy; }:°, and an initial
conditionz € X. We then define, = x andz;; = ®(x;,w;). We will denote byP! with n ¢
N U {oo} the measure oK™ obtained by transportinB™ with the map{w,} — {z;}. Itis also
natural to viewP" as a measure oX"* x Q" by transportind®” with the map{w;} — {z;, w;},
so we will use both interpretations.

Remark 2.1 The above setup is designed for the study of stochastic differential equations
driven by additive noise. In that case,is some Wiener space addmaps an initial condi-

tion and a realization of the Wiener process on the solution afteritimievertheless, our setup
covers much more general cases.

The coupling needs two copies of the pathspaeaye will consider elementsz(y) €
X x X>_ It will be convenient to use several projectors frii x X" to its components. We
define therefore (fon < N):

H13($,y)'—>l’, Hg:(x,y)'—>y, 7Tn:(xay)'_>(ajn:yn)'
We also definer; ,, = II; o m,, for i € {1,2}.
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Definition 2.2 Let ® be a Markov chain on a Polish spa¢and letP;° be the associated family
of measures on the pathspac®. A couplingfor @ is a familyC2°, of probability measures on
X x X*° satisfying

ICY, =P and ICY =PX,

wherell; andIl, are defined as above.

A trivial example of coupling is given b2 = P x B*. The interest of constructing
a non-trivial coupling comes from the following observation. Take some suitable set of test
functionsG on X and define a norm o7 (X) by

| 1llg = sup(g, p) -
geg

Once the existence of an invariant measure for the Markov chasnestablished, one usually
wishes to show its uniqueness by proving tidbrgets about its past sufficiently fagg.

lim Py —PJllg =0, forall (v,y)eX*,

with suitable bounds on the convergence rate as a function of the initial conditions. Now take a
couplingC?°, for ®. Itis straightforward to see that by definition the equality

(Prg) = [ 9(2)(71,C3,)(d2)

holds, as well as the same equality whete, is replaced byr,,, andP; is replaced byP;.
Therefore, one can write

P —Pllg = ‘:’35 /X Xx(g(le) — g(Ilz2)) (m,C2°, )(dz) . (2.2)

This equation is interesting, because it is in many cases possible to construct a c@jpling
such that fom large, the measure;Cgfy is concentrated near the diagomhlz = Il,z, thus
providing through (2.2) an estimate for the tefRf' — P'||¢. This is precisely what was shown
in our toy model of Section 1.1, where we construcfed such a way thafz(t) — y(t)|| — 0

fort — oo.

2.3 The binding construction

In this subsection, we describe a specific type of coupling for a given ®DSnly couplings
of that type will be taken under consideration in the sequel.

Let & and the associated probability spa€k ./, P) be as above. We consider a family
Vr_y : 2 — Q (the pair ¢, y) belongs toX?) of measurable functions that also have measurable
inverses. We will call these functioénding functiondor ®. The reason for this terminology
is that, given a realizatiofw, }°2, of the noise and a pair of initial conditions( y) € X?,
the binding functions allow us to construct two pafhs } and{y,} by setting

Wy = ¢$7L—>yn(wn) ) Tn1 = (I)(xm wn) ) Yn1 = q)(ym (Dn) . (23)
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Our aim is to find a familyy, ., such thaty,, converges towards, in a suitable sense for large
values ofn. Thus, the binding functions play the role of a spring betweandy. We will say
that (2.3) is einding constructiorfor . We denote the inverse of, ., by ¢,_,. The reason
behind this notation should be clear from the diagram below.

Tp oo . Yn
*wxn*’yn 4 - ~
D) < T Gy (-, 20) (2.4
Tn—Yn
Tn+1 Yn+1

The solid arrows denote the various maps and the dashed arrows denote the influences of the
appearing quantities on those maps. It shows that it is also possible to achieve the binding
construction by first choosing a sequercg, }>° , and then using),,, . ,,, to construct thev,,,
thus obtaining the same set of possible realizationsafpry,). This symmetry between, .,
andy,_, is also explicit in (2.6) below.

Guided by the above construction, we use the binding maps to construct a coupling Markov
chain¥ on X x X with transition probabilitie€, , in the following way. Define the maps

U, Q- QxQ T, Q> QxQ

W= (vaxﬁy(w)) , W= (wwhy(w)aw) :

(2.5)

Notice that, up to some null set, the image of both maps is th¢(se) | © = ¢, ., (w)}.
Then we define a family of measurs, on (2 x 2 by

P, =W, P)A (Y, P) =T, (PAY; P). (2.6)

According to (2.4), the measuRg , is precisely the common part between the measure ob-
tained for (v, @,) by distributingw,, according toP and the one obtained by distributiag
according tP. Thus both marginals of the meastg, are smaller (in the sense of Section 2.1)
thanP. In order to have a non-trivial construction, we impose that the meaBuzesy; | P
are equivalent. The density of,_ P relative toP will be denoted byD, , ().

Considering again (2.4), the family of measules is transported oiX x X by defining

Dy xQ—XxX
(w,0) = (02, w), By, W) ,

and setting
Q,y=9. P, . (2.7)

'T7y x7y

But this does not give a transition probability function yet, since the measresare not
normalized tol. We therefore define the family of measuRes by

Py = Poy oy (PNIGP, ) < (PATIEP, ),

where the numbet, , is chosen in such a way that the resulting measure is a probability mea-
sure. By a slight abuse of notation, we used here the syhipt denote the projection on the
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ith component of2 x ). As a matter of factiP \ IIP, ) and(P \ II;P, ) have the same mass,
whichis equaltd — ||P, [, so

1

el

for example. (Recall that the symbip} || stands for the total variation norm, which is simply
equal to its mass for a positive measure.) It is straightforward to show that the following holds:

Lemma 2.3 The measureB, , satisfyll;P, =P fori=1,2.

Xy

Proof. Itis clear by (2.6) thail’P, , < P. Thus

i X,y

HTPx,y - HTP:E,y + C%ZJHP \ HSPx,y”“D \ HTP’D,y)

2.8

= (PATEP,,) +(P\TIR,,) =P, 29

and similarly forTI3P, . i
This finally allows us to define the transition probabilities foby

Coy=9,,P,=Qsy+Rsy. (2.9)

In this expression, the only featureRf , we will use is that it is a positive measure. We define
C:, as the measure on the pathstE?ex X> obtained by iterating (2.1). Sindé, o ¢, , =
<I)(x -) o II; and similarly forll,, it is straightforward to verify, using Lemma 2.3, that the
measureC?’, constructed this way is indeed a coupling far

For a glven step o, we say that the trajectories do couple if the step is drawn according
to Q. , and that they don’t couple otherwise.

Remark 2.4 SinceP, , is a family of measures ol x €}, itis also possible to interpr€t; , as

a family of probability measures ofi* x X™ x Q™ x ". We will sometimes use this viewpoint
in the following section. It is especially useful when the RDSs obtained by sampling a
continuous-time process.

Remark 2.5 It will sometimes be useful to have an explicit way of telling whether a step of
is taken according t®@;°, or according tdR3’, (i.ewhether the trajectories couple or not). To

this end, we mtroduce a Markov chainon the augmented phase space X x {0, 1} with
transition probabilities
P :Qx7yX61+Rx,yX60'

I?y

The marginal of onX x X is of course equal t&. By a slight abuse of notation, we will also
write C2°, for the probability measure on pathspace induced by

It will be useful in the sequel to have a map that “transports” the family of miapg on
)" via the RDS®. More precisely, fix a paira(; y) € X x X of starting points and a sequence
(wo, - .. ,wy) of realizations of the noise. We then defing= z, yo = y, and, recursively for
1=0,...,n
i1 = P, wi),  Yirr = P(Yi, Yy, (W3)) -
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This allows us to define the family of magg , : Q" — Q" by

Hn—l—l(wﬂy cee 7wn) = (¢xo—>y0(w0)7 s 71/}acn,—>yn (Wn)) . (210)

Sincey;_, P is equivalent toP, we see thaf=7 )"P" is equivalent toP” and we denote its
density byD} . We also notice that the family of measui@$, is obtained by transporting
(2%,)°P* AP™ontoX™ x X" with the mapsp,, ,, o ¥,,_,,. In particular, one has the equality

Q2 = II(E2,)" P APl = | (LADE, () P"(d) (2.11)

3 Assumptions on the Coupling

In this section, we investigate the properties of the couplfg constructed in the previous
section. We give a set of assumptions on the binding functigng that ensure the existence
and uniqueness of the invariant measuredfor

In order to achieve this, we want the map_, to modify the noise in such a way that
trajectories drawn according @, , tend to come closer together. This will be the content of
AssumptionA3. Furthermore, we want to know that this actually happens, so the noise should
not be modified too much. This will be the content of assumptihsandA5. All these nice
properties usually hold only in a “good” region of the phase space. Assumpibasid A2
will ensure that visits to this good region happen sufficiently often.

3.1 Lyapunov structure

Since we are interested in obtaining exponential mixing, we need assumptions of exponential
nature. Our first assumption concerns the global aspects of the dynamics. It postulades that
is attracted exponentially fast towards a “good” region of its state space. We achieve this by
assuming the existence of a Lyapunov functiondor

Definition 3.1 Let ® by a RDS with state spac€ as before. ALyapunov functioror @ is a
functionV : X — [0, oo] for which there exist constantse (0, 1) andb > 0, such that

/Q V(®(,w)) P(dw) < aV(z) + b, (3.1)
for everyx € X with V' (z) < oc.
Our first assumption then reads
Al There exist a Lyapunov functidnfor . Furthermore,V is such that
P{w| V(®(z,w)) <oo} =1,
for everyx € X.
For convenience, we also introduce the functionX x X — [0, o] defined by

V(z,y) = V(z) + V() .
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Notice thatl is a Lyapunov function fol by construction.

In some cases, when the control over the densitiggis uniform enough or when the phase
space is already compact (or bounded), a Lyapunov function is not needed. In such a situation,
one can simply choosg = 1.

In our case of interest, the RBBis obtained by sampling a continuous-time procésat
discrete times. In that setting, it is useful to have means to control excursions to large amplitudes
that take place between two successive sampling times. To this end, we introduce a function
WX x Q — [0, 0] given by

W(.I',w) = SUp V(Cbt($>w)>

t€[0,1]
in the continuous-time setting and by
W(z,w) =V(z)

in the discrete-time setting. In fact, any other choic&lofs all right, as long as it satisfies the
properties that are summarized in Assump#dhbelow.

Before stating these properties, we define two other functions that act on pairs of initial
conditions that couple by

Wxﬁy(w) = W(ZE, w) + W(y, 77Z)ac~y(w)) ’
Wy y(w) = W(z, Yy y(W)) + W(y,w) .

We will assume thatV’ and the binding functions are such th&t, W, ., andW,_, do not
behave much worse than. More precisely, we will assume that:

(3.2)

A2 There exists a functiol : X x €2 — [0, co] such that
esgggan(:c, w) =V(x), (3.38)
/ Wz, w) Pdw) < ¢ V() , (3.3b)
Q

for some constant > 0. Furthermore, there exist constar@s> 0 and¢é > 1 such that the
estimates
Weoy(@) < COA+ V() + W(z,w))’,
Weoy(W) < C(1+ V(@) + Wy, w)’,

hold for the functions defined in (3.2).

(3.4)

The Lyapunov structure given by assumptidiisandA2 ensures thaltl” (and thus alsd”)
does not increase too fast along a typical trajectory. In order to make this statement precise, we
define for a given initial condition € X the sets4, , C Q> by

App = {w € Q° | W(D"(z,w),wn) < kV(z) + kn®> V¥n >0}, (3.5)

wherek is some positive constant. The setts, contain almost every typical realization of the
noise:
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Lemma 3.2 Let ® be a RDS satisfying assumptioAh$ and A2. Then, there exists a constant

C > 0 such that o
POO(A{L',]C> Z ]- - E )

for everyz € X and everyk > 0.

Proof. Forw € >, we definer,, = ®"(x,w). Notice that by (3.3b) and the Lyapunov struc-
ture, one has the estimate

be

E(W (@, w0n11)) < ca" V(@) + 1

(3.6)

whereE denotes expectations with respecPfs. We also notice thatl, ., = N,.- Ag‘,)g with
ASU",)C ={w | W(@n, wni1) < kV(2) + kn?} .
Combining this with (3.6), we see that

"W(x)+b(1 —a)?
(Azk) = k V(x) + n?

Therefore, the worst possible estimate R6t(A, ;) is

- ¢ X a"V(z)+b(1 —a)t
PR(Ae) 21— 12 V() +n2

n=1

which proves the claim. O

3.2 Binding property

The crucial property of the coupling is to bring trajectories closer together. In order to make this
statement more precise, we introduce the Lipschitz npriy defined on functiong: X — R

by

l9(x) — 9(v)|
= Su + sSup ————,
HgHL x€f|g($)| z,ye?( d(l', y)

whered(-, -) denotes the distance ¥a The dual norm on# (X) is then given by

[ull. = sup X9(96)u(d96)-

lgll =1

With this definition at hand, we make the following assumption on the couplingart

A3 There exist a positive constamt and a family of constant& — C'x such that, for every
K >0,
177, Qe — M2, Q7 [l < Cre™ ™™, 3.7)

holds wherV/ (z,y) < K.
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Remark 3.3 The sub-probability kernel®,, , are smaller than the transition probabilities for
the binding construction (2.3). Thus, (3.7) is implied by an inequality of the type

E(d(xnvyn)) S C‘N/(an yO)e_,nn )

whered denotes the distance ¥randE denotes the expectation with respect to the construction
(2.3).

Notice that this assumption is non-trivial only if our coupling is such t}@° || > 0 for
sufficiently many starting points. This will be ensured by the next assumption.

A4 LetD;  be defined as in Section 2.3. We assume that for every0, there exists a family
of setstgfy C Q* and constants;, ¢, > 0 such that the estimates

Pl ) > ¢ /F (D (@) PP (dw) < e (3.8)

T,y

hold for everyn > 0, whenevel/(z,y) < K. The integral overl“fcfy in (3.8) should be
interpreted as the integral over the projectionRify onto itsn first components.

A typical choice forl'} isT%, = A, or 'Y, = A, N A, with & sufficiently large as a
function of K. In this case, Lemma 3.2 ensures that the conditions requirﬁglpare satisfied.
As a consequence of Assumptidd, we have

Proposition 3.4 Let Q3°, be defined as above and suppose that assumpéidrend A4 hold.
Then there exists for evedy a constanCy such that| Q5 || > Ck, whenevel/ (z,y) < K.

Proof. Notice first that ifu; and u, are two equivalent probability measures with(dx) =
D(z) 1 (dz), then the condition

[ (P@) " ) < ¢

implies that

Ml(A)2
(11 A p2)(A) > o

see,e.g[Mat01]. Recalling (2.11), we use Lemma 3.2 and the above estimate.vith P,
D=D" , andA = chfy. Taking the limitn — oo and using the assumption di\ify proves the

z,y’

claim. -

Our last assumption will ensure that trajectories that have already coupled for some time
have a very strong tendency to couple for all times.

In order to formulate our assumption, we introduce a family of &téx, ), which are the
possible final states of a “coupled” trajectory of lenggtlstarting from ¢, i), and never leaving
the set{(a,b) | V(a) + V(b) < K}. For a given pair of initial conditionsz(y) € X? with
V(z,y) < K, we define the family of sei97.(z, y) C X x X recursively in the following way:

Q. y) ={(z.y)},



100 EXPONENTIAL MIXING THROUGHASYMPTOTIC COUPLING

Q?{+1(x7y) = U {<(I)a7b o \Ijaab)(w) | w e Q andWaHb(w) S K} :
(a,b)EQ% (z,y)

Notice that we would have obtained the same sets by reversing the directions of the arrows in
the definition.
We also denote bp, ,(w) the density of);_ P relative toP.

A5 There exist positive constants, v, and ¢, such that for every< > 0, every(xo, y) € X2
with V(zg, yo) < K, and every(z, y) € Q% (zo, yo), the estimate

/ (1= Dy (W) P(dw) < Coe2"(1 + K)° | (3.9)
W y(W)<K

holds forn > ¢ In(1 4+ K)/7s.

This assumption means that if the process couples for artjrtree densityD,, , is close tol
on an increasingly large set, and therefore the probability of coupling for a longer time becomes
increasingly large. This assumption is sufficient for the family of meast®@s), , to have an
exponential tail at large values of More precisely, we have

Proposition 3.5 Let assumptioné&1, A2 and A5 hold. Then, there exists a positive constant
~3 and, for everyK > 0, a constantC'x such that

[(RQ™)zyll < Cre™™, (3.10)

holds for every: > 0, whenevel/ (z, ) < K.

We first show the following elementary estimate (it is not optimal, but sufficient for our
needs):

Lemma 3.6 Let iy, uo € #,(X) be two equivalent probability measures with
pa(dz) = D(x) pu (d) -
Then the conditions
mA>1-a and [ (1-D@) ) <=,
for some measurable sdtimply that
(1 Am)(A) > 11— &5
Proof. Define the sety C X by
E=An{zeX|D(x)>1}.

We then have

(1 A j2)(A) = in(B) + | D) ()
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—mA -/, (L= D) (i)

> (A4) - | 1= D) ()

>1—g — _ 2 .
>1-¢ ¢ [ (1 D@ )
This shows the claim. 0

Proof of Proposition 3.5 Fix the valuen and the pair, y). For everyc, > V(z,y) (we will
fix it later), we have the estimate

IRQ Yyl = [, (1= l10%, ., P API) (m: Q2 )z, ) (3.11)
< (m1Q1,) (X \ Q4 (@)
A=, P AP (TQ2, ), dyn)

2. (zy)

Now choose another value, to be fixed later and consider for eveny,(,,) the set
B, ={weQ|W,, 4. (w) <w,}.

By the definition ofQ; (z,y), its elements,, y,) satisfy in particula®/ (z,,, y,) < ¢,. By
AssumptiorA2 and the Lyapunov structure, we have for every, {;,) € Q7 (z,y) the estimate

P(B.) > 1— O .
Wn
Combining this and Assumptiof5 with Lemma 3.6 yields

9%, P AP 2 1= O = Ce (1w, )2,

as long aswv,, is such that
w, > ¢, and n>ln(l+ w,)/ys - (3.12)
It remains to give an upper bound for; Q7 ) (X*\ Q% (x,y)) to complete our argument. Define
the setsA"(K) C X" x X" x Q" x Q" by
ANK) = {(i, yi, wi, mi)izy | Wz, wi) + Wiys,m) < K}
It is clear by the definition of); (x,y) that we have the equality
(mn Q3 (X*\ Q2 (2, 9)) = Q7 (X" x X" x Q" x Q" \ A(cn))

whereQy; , is considered as a measureXh x X" x Q" x ()", following Remark 2.4. Since
vy < ClL,, we have

(M Q7 )X\ Q2 (2,1) <1—CJ (A™(cn)) < oV +1)

Cn
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for some constar’. This last estimate is obtained in a straightforward way, following the lines
of the proof of Lemma 3.2. Plugging these estimates back into (3.11) yields

n(V(z,y) + 1) Lo

1

Cn

H(RQn)a:yH <C + Ce—”mn/?(l + wn)C/Z ‘

At this point, we make use of our freedom to choes@andw,,. We set
Cp = V(az, y) + e’ and W, = V(x, y) + e,
with ~. and~,, given by

= 1 and = 0
T 2425 Te =51

As a consequence, there exist for any. ~. some constants' andc such that

”(RQn)w,yH < C(l + V(xa y))ce—'yn )

Ve

aslongas > ¢ In(1+w,)/v2. (Such avalue of can always be found, because the expongnt

is always smaller tham, /¢.) In order to complete the argument, we notice that (3.10) is trivially
satisfied for small values ot becausd|(RQ"),,| is always smaller than by definition: it
suffices to choosé€'x sufficiently big. The proof of Proposition 3.5 is complete. O

4 An Exponential Mixing Result
This section is devoted to the proof of the main theorem of this paper.

Theorem 4.1 Let ® be a RDS with state spaeesatisfying assumption81-A5. Then, there
exists a constant > 0 such that

1Py =Pyl < C(L+ V() e,
for every(x, y) € X* and everyn > 0.

Remark 4.2 The proof of Theorem 4.1 does not rely on assumptihandA5 directly, but on

the conclusions of Propositions 3.4 and 3.5. Nevertheless, in the setting of stochastic differential
equations, it seems to be easier to verify the assumptions rather than to show the conclusions of
the propositions by other means.

Corollary 4.3 If & satisfies assumptioms1-A5, it possesses a unique invariant measuse
and
1Py — el S C(A+V(z)) e ™ .

Proof of the corollary. To show the existence of the invariant measurewve show that for any
given initial conditionz with V' (z) < oo, the sequence of measui@sis a Cauchy sequence in
the norm|| - ||_. We have indeed

1Py —Pe**ll = sup | g(2)(Py — Py *)(dz)

llgll, <1 /X
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= sup /X/xg(z)(Pg—P;‘)(dZ) P (dy)

llgll <1
< [ 1Pz =PI PEy) < Ce™ [ (14 Ve, 1)) Ph(dy)
<Ce ™1+ V(x)),

where we used the Lyapunov structure to get the last inequality.
The claim now follows immediately from the theorem, noticing that.ifis an invariant
measure fo, then

[V < 2,

due to the Lyapunov structure and the fact that the dynamics immediately leavesithé(se).
0

Before we turn to the proof of Theorem 4.1, we introduce some notations and make a few
remarks. By iterating (2.9), one sees that

C;??J - ;?y + Z{)(COORQn)x,y ' (41)

where the symbolC*RQ"),  is to be interpreted in the sense of (2.1). This expression is the
equivalent, in our setting, of Lemma 2.1 in [Mat01]. Using (4.1), the Markov chagan be
described by means of another Markov ch@lionY = (X? x N) U {x}, wherex corresponds

to “coupling for all times” in the sense of Section 2.3. First, we define

4b

Ky, = ,
0 1—a

wherea andb are the constants appearing in the Lyapunov condition. This set is chosen in such
a way that

~ 1+a-~ ~
/X><X V(I7 y) C:vo,yo(dl’» dy) S TV(‘T()? yO) ’ V (x07 yO) g KO . (43)

Attime 0, T is located at#, y, 0). If it is located at ¢, y, n) and (¢, y) & K, then it makes
one step according 16, , andn is incremented by one:

P(a:,y,n) = Cx7y X 571-’-1 '

If Y is located at«, y, n) and @, y) € Ky, then it has a probabilit Q< || of jumping tox and
a probability||(RQ™).., || of makingm steps according tdRQ™),.,:

P(z,y,n) = HQ;?yH(S* + Z W;(RQm)I,y X 5n+m+l .

m=0

If T is located ak, it remains there:
P =9, .

*
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The Markov chainY induces a familylf’g?y of probability measures oM. Let7:Y>* —
N U {co} be the function that associates to a sequence of elemeMtthi& largest value of
that is reached by the sequence= 0 if the sequence is equal torepeated). We also define
k:Y>® — NU{oo} as the value of. attained at the first non-vanishing time when the sequence
hits the seti, x N (k = o if this set is never reached). The constructior(a very close to
the coupling construction of [Mat01].

The crucial observation for the proof of Theorem 4.1 is

Lemma 4.4 Let ® be a RDS with state spaeésatisfying assumptions1 and A3, and letY
be defined as above. Then, there exists a consétamich that

1P — P7|, < P, ({7 > n/2}) + Ce /2,

for every(z, y) € X? and everyn > 0.

Proof. Recall the Markov chain? defined in Remark 2.5. We define a functienon its
pathspace by

71 X% x X* x {0,1}* - NU {0}
{(zi, v, b)) Yoo, — Inf{n| (zn, yn) € Ky andb; = 1 Vi > n}.

Combining (2.2) with AssumptioA5 and the definition ofy, one sees that

||P;L - P;”L S Cg?y({Tl Z ’n,/Q}) + Ce—’Yln/Q )
From the construction of" and the definition off, we see furthermore that the probability

distributions ofr; underC;f’y and of7 underlsgfy are the same. O

Proof of Theorem 4.11t remains to show thd?gf’y({% > n/2}) has an exponential tail. The

key observation is the following. Let, € N U {—oo} with n > 0 be a Markov chain defined

by
—00 with probabilityp,,

x, +m with probabilityp,),,
wherem > 1 and, of coursep, + > o>, p,,, = 1.

x9=0, $n+1:{

Lemma 4.5 If thep,, have an exponential tail and we define=- max, x,,, then the probability
distribution ofr also has an exponential tail.

Proof. The claim is an easy consequence of Kendall's theorem, but for the sake of complete-
ness, and because the proof is quite elegant, we outline it here. Define the analytic function
p(Q) = >0, pm(™ and defingy, as the probability of being equal to. Notice that, because

of the exponential tailp is analytic in a disk of radius strictly bigger thararound the origin.

A straightforward computation shows thgt= p, and, forn > 0,

n =p*(pn + > Dbt Y. DiiDkePhs T - ) ;
ki+ko=n ki1+ko+tks=n
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which is equal to thexth Taylor coefficient of the function

D«
() = :
1 —p(¢)
Sincep(1) = 1 — p, < 1, there exists an > 0 such thaip(1 + ) < 1. Furthermore, since the
py, are all positive, one has the estimgi&)| < p(|¢|). Using Cauchy’s formula on a circle of
radiusl + ¢, one gets

Igal < Dx 1
1—p(1+e)(1+e)

which shows the claim. 0

Before we prove Theorem 4.1 in full generality, we restrict ourselves to the case whgre(
K. It follows from the construction that (seen as a random variable under the distribution
induced byisgfy) is dominated by the procesg constructed above with the tail distribution of
thep,, being equal to

Pm= sup PX({&#=m}).
(x7y)EKO

This means that we define, as
m*:inf{m‘ Zﬁngl},

and then sep,, = p,, for m > m,, p,, = 0 form < m, — 1, andp,,, 1 in such a way that the
pn, SUM Up tol.

Because of Lemma 4.5, it suffices to show that the tail distribution ofthdecays expo-
nentially. We thus estimate the quantﬁ%({;% > n}). To this end, we introduce the function
Ty : X X X* — N U {00} defined by

Ty(2,y) = inf{n > 0 | (€0, y.) € Ko} .

Notice that, in order to have > n, there are two possibilities. Either the first stepYofs
taken according toRQ™).., with somem > n/2, or the corresponding realization fstays
outside ofK, for a time longer tham /2. This yields the estimate

B (A nh) < 3 [RQ™ |+ 2 sup C,({ry > n/2})

m=n/2 (z0,y0)€ Ko

holding for (z,y) € K,. The first term has an exponential tail by Proposition 3.5. The second
term has also an exponential tail by (4.3) and standard Lyapunov techniquesgpd&94,
Thm 15.2.5]). This concludes the proof of Theorem 4.1 for the casg € K.

In order to conclude the proof for the casey) ¢ K, notice that

P (7> n}) < 3 C2({ry =m}) sup PX, ({+>n—m})

m=1 (x0,y0)€K0
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sup If’;iyyo({f' >n/2}) + i C;?y({ﬂp =m}) .

(z0,y0)€ Ko m=n/2

n
< —
-2
The first term is bounded by the construction above. The Lyapunov structure implies that there
exists a constant > 0 such that the first hitting timey satisfiesE, ,)e?™ = O(V (z, y)) for
every (r,y) € X? (see again [MT94, Thm. 15.2.5]). This allows to bound the second term and
concludes the proof of Theorem 4.1. 0

5 Application to Stochastic Differential Equations

In this section, we will see how to apply Theorem 4.1 to the case when thelR®&nstructed
by sampling the solution of a (possibly infinite-dimensional) stochastic differential equation.
We will restrict ourselves to the case where the equation is driven by additive white noise.
The case of multiplicative noise requires further estimates, but can also be described by the
formalism exposed here.

Consider the equation described by

dz(t) = Ax dt + F(z) dt + Q dw(t) , x2(0) = ¢, (5.1)

wherez belongs to some separable Hilbert spa&tew is the cylindrical Wiener process on
some separable Hilbert spake, and A, F and( satisfy the following assumptions:

B1 a. The linear operatord: Z(A) — 'H is the generator of a strongly continuous semi-
group on’H.
b. The operatore'Q): W — H is Hilbert-Schmidt for every > 0 and one has the
estimate

1
/O e QP g dt < oo . (5.2)

c. The nonlinear operatoF': Z(F) — H is such that, for every, € H, there exists a
unique, continuous stochastic procegs) such thatz(s) € Z(F) for s > 0 and

z(t) = ety + /0 t eI (2(s)) ds + /0 t eA=90Q dw(s) , (5.3)

for everyt > 0.

Remark 5.1 This assumptions simply states that there exists a unique weak solution to (5.1).
Notice that we danot make any assumptions on the tightness of the transition probabilities
for (5.1). As a consequence, existence and uniqueness results for invariant measures can in
principle be deduced from Theorem 5.5 below even in cases where the semigtdamot
compact.

In order to recover the formalism used in Section 2, we follow [DPZ92b] and introduce an
auxiliary Hilbert space/V such that there exists a continuous embedding’ — W, which
is Hilbert-Schmidt. We can now sét = C,([0, 1], W), the space of continuoug/-valued
functions that vanish dt, and define® as the Wiener measure # with covariance operator

*

(278
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We defined : H x 2 — 'H as the map that solves (5.3) up to tiflngiven an initial condition
and a realization of the noise. This map is defiRealmost everywhere ofl. We also denote
by &, : H x Q> — H the map that maps an initial condition and a realization of the noise onto
the solution of (5.3) after a time

Our next assumption is the existence of an appropriate Lyapunov furiction

B2 There exists a measurable functibh H — [0, o] and constants < 1 andb,c,d > 0
such that

E.V(P(z,w))
Ew( sup V(<I>t($,w)))

0<t<1

P{w | V(®(z,w)) = o0}) =0,

aV(z)+0,

<
< V() +d, (5.4)

for everyz € ‘H. Furthermore,VV dominates the norm ifi{ in the sense thafz| <
C(1 + V(z)) for some constant'.

As is Section 3, we defin€(z, y) = V() + V(v).

Remark 5.2 Take™ equal to 2(©) for some regular bounded domaih c R?, A a second-
order elliptic differential operator o® with sufficiently smooth coefficients, and any poly-
nomial non-linearity of odd degree having the correct sign. The assumBibasndB2 are
satisfied withV (z) = ||z||¥ for every powelp > 1 and every “reasonable” norfh ||,, as long
asQ is “small” enough. (One can for example take for||, the L>° norm or a Sobolev norm.)

We now turn to the binding construction for the problem (5.1). Take a funétioh’? — W
and consider thé{>-valued process{ y) solving

dz(t) = Ax dt + F(z) dt + Q dw(t) , (5.5a)
dy(t) = Ay dt + F(y) dt + Q G(x,y) dt + Q dw(t) . (5.5b)

Notice that the realization af is the same for both components. The process (5.5) yields our
binding construction for (5.1). In order to give sense to (5.5b), we introducé&thealued
process(t) = y(t) — z(t) and we define it pathwise as the solution of the ordinary differential
equation

o0=Ao+F(x+0) — F@)+QG(x,z + o) . (5.6)

We assume that is sufficiently regular to ensure the existence and uniqueness of global weak
solutions to (5.6) for almost every (with respect to the measure on pathspace induégd by
continuous functionz : [0,00) — H. This allows us tadefinethe stochastic procesgt) by
y(t) = z(t) + o(t). We will denote byd, : X x X x Q — X the map that solves (5.5b) up to time
t, given an initial condition forr andy, and a realization of the noise.

The above construction is invertible in the following sense. Considekthealued process

di(t) = Az dt + F(@)dt — Q G(&,9) dt + Q di(t) , (5.7a)
dij(t) = Agdt + F(j)dt + Qdi(t) , (5.7b)
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where we give sense to the equationfas above by setting = ¢ —  and solving
0=A0+F@ - FG-0+QGH—a,9).

We denote byb,: X x X x Q — X the map that solves (5.7a) up to timegiven an initial
condition forz andy, and a realization of the noise € (2. We see that (5.7) can be obtained
from (5.5) by the substitutiodo = dw + G(z,y)dt and a renaming of the variables. This
observation yields the invertibility of the maps ., defined in Eq. (5.12) below.

We will state two more assumptions to make sure that the conclusions of Theorem 4.1 hold.
First, we want5 to become small as andy become close.

B3 There exists a constant > 0 and exponents, 3 > 0 such that
|GG, )| < Clle = y|*(1+ V(w,y)” (5.8)
for everyz,y € H.

The last assumption ensures that the progégsonverges towards(t) for large times.

B4 There exist positive constantsand~ such that the solutions of (5.5) and (5.7) satisfy
H(I)t(xa W) - (ft(xv Y, w)” S Cei’yt(l + V(y) + SUpV(@s(x,w))) ’ (59a)
s<t

|Bu(z, y, w) — Puly, w)|| < Ce™(1+V(x)+ SL<JtpV(<I>s(y,w))) , (5.9b)

for P-almost everyw € Q. Furthermore, there exists§ > 0 such that one has the
estimate
5

V(@i(r,y,w)) < C(1+ V() + SgtpV(CDS(x, w))) (5.10a)

5

V(@i y,w)) < C(1+ V(@) + sUpV (@, (y,)) ) (5.10b)

for P>°-almost every € Q> and everyt > 0.

Remark 5.3 One important particular case is the choicér) = ||z||”, where the powep is
chosen in such a way that (5.9) is satisfied. Notice that in this case, the estimates (5.10) are a
straightforward consequence of (5.9).

The functionG is then only required to satisfy a bound of the type

IG@. I < Cllz = ylI* (1 + [l=[l + yID*

with o andq some arbitrary positive exponents.
It is also possible to choo3&(z) = ||z||2, with ||-||. the norm of some Banach spage- H.
In this case, (5.9) with th8-norm replacing thé&{-norm in the left-hand side implies (5.10).
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Remark 5.4 An equivalent way of writing (5.9b) is

|Po(, w) — i, y, w)|| < Ce™ (14 V() + SupV (@,(, w))) - (5.11)

The equation (5.11) will be more natural in our examples, but (5.9) is more symmetric and more
convenient for the proof of Theorem 5.5 below.

All these assumptions together ensure that exponential mixing takes place:

Theorem 5.5 Let A, F and( be such that assumptioBd andB2 are satisfied. If there exists
a functionG: H?> — W such that assumption83 and B4 hold, then the solution of (5.1)
possesses a unigue invariant measuyend there exist constans, v > 0 such that

1P = gl < Ce (1 + V(2)) .

Proof. It suffices to show that assumptioAg—A5 hold. AssumptiorAl follows immediately
from AssumptionB2. In order to check the other assumptions, we define the various objects
appearing in the previous sections. We have already see that{, 2 = C,([0, 1], V), and
® is the solution of (5.1) at timé.
We define the functioll’ : H x Q — [1, oo] by

W(x,w) = sup V(Py(z,w)) .

t€[0,1]

The estimate (5.4) and the definition ensure iWasatisfies (3.3a) and (3.3b). The bound (5.10)
ensures that Assumptidk® is also satisfied.

It remains to define the binding functionts_.,, and to compute the densiti&g . According
to the constructions (5.5) and (5.7), we define fanf) ¢ #? the binding functions

t —
(VoD@ = ) + [ G@.a,0), ol y,0)) ds (5.122)
t —

(Vo (D@ = ) = [ B ,0). D(y,0)) ds (5.12b)
with ¢ € [0, 1]. It follows from the construction that these functions are each other’s inverse.
Furthermore, if we identify2" with Co([0, ], W) in a natural way, we see that the mafs,
introduced in (2.10) are obtained from (5.12) by simply lettinigke values in(, n]. These
observations allow us to compute the densifigs (w) by Girsanov’s theorem:

Lemma 5.6 The family of densitie®} () is given by

D3,) = exp( [ Gl y0), 2y, ) o) = 5 [ 16 P )

where the arguments 6f in the second term are the same as in the first term.
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Proof. If we can show that Girsanov’s theorem applies to our situation, then it precisely states
that
v P =P,

with IS"(dw) =Dy ,(w) P"(dw), andD;  (w) defined as above. Applying; _, to both sides of
the equality shows the result.

We now show that Girsanov’s theorem can indeed be applied. By [DPZ92b, Thm 10.14], it
suffices to verify that

/Q DI ()P (dw) = 1. (5.13)

This can be achieved by a suitable cut-off procedure. Defin&/for 0 the function

_ [G(z,y) i [|G(z,y)] <N,
G, y) = { 0 otherwise,

and define
n _ 1 n

It is immediate that (5.13) holds fdvg;;\’. Furthermore, it follows from AssumptioB4 that
there exists a constaaty such thatD;;éV (w) = D} ,(w) on the set

Ty = {w € P | V(d(z,y,w), Bs(y,w)) < Cx Vs €[0,n]} .

The setd’y satisfy limy_.., P*(I'v) = 1 by (5.4) and (5.10b). This shows that (5.13) holds.
Notice that thea-priori bounds of AssumptioB4 were crucial in this step in order to apply
Girsanov’s theorem. The bound (5.8) alone could lead to exploding solutions for which Gir-
sanov’s theorem does not apply. O

It is immediate that Assumptio3 follows from AssumptiorB4 and the definition of the norm

- lle-

We now turn to the verification of Assumptid®. Recalling the definition (3.5), we see
that in our case

Ays C By ={w € O | V(D,(y,w)) < k(V(y) +5%) Vs >0}.

As we see from the definition d$, ;,, a natural definition for a truncatia@, ; of G (this time
the truncation additionally depends on time) is

oo [G@ED V@) <kVEy)+12),
Gy x(7,7,1) {0 otherwise.

As above, we define

Db (w) = exp(/0 "Gy (Dol g, w), Bily, w), t) dw(t) — ; /0 Gyl P dt)
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By definition,Dg;j(w) = Dy (w) foreveryw € B, ;. Setting¢ = d(a + ), we thus have the
estimate

[, L) TP < [ (D))

Y,k

<(,

< (/BM eXp<1O/0n (je—vt(l V() + EEPV@S(W))f dt) P”(dw))1/2

n _ , 1/2
exp(10 [ Gu(@ule, . ), Buly, ), )| de) P(d) )
k

< exp((]/on e (1 4 kV(x, y) + kt?)* dt) .

In this expression, we used the Cauchy-Schwarz inequality to go from the first to the second
line, and we used assumptioB8 and B4 to go from the second to the third line. Since the
integral converges fat — oo, the bound is uniform im and Assumptio®4 is verified.

The verification of AssumptioA5 is quite similar. Fix some positive constakit > 0 and
use again the cutoff function

= oy = { G@.g) if|G@ 9P <N,
Gt ) = { 9 :
(@ 9) 0 otherwise.
The precise value a¥ (as a function ofK) will be fixed later. We also fix a pairg, yo) € H?
with V(z¢, y0) < K, avaluen > 0, and initial conditions®, y) € Q' (z¢, o). By the definition
of Q% (xo, vo), there exists an elemefite Q2" such that

(xhy) = ((En(x(]?ym&)aq)n(y()aw)) ’ (514)
and such that )
S[l(')lp] V(q)s(xm Yo, (D)a (I)s(y07 @)) S K. (515)
se[0,n

Following the statement of Assumptiéd, we define the set

BE, ={weq| sup V(@ur,yw) 0ly,w) < K},

t€[0,1]

which is equal in our setup to the set over which integration is performed in (3.9). Being now
accustomed to these truncation procedures, we define again

DI )(w) = exm(/o1 G (By(, y, w), Dy(y, w)) dw(t) — ;/01 |Gl P dt) -

By (5.14) and the cocycle property, we can write the integral in the above expression as

1 - - ~
A GN((I)n-‘rt(IOv Yo, ww)v (I)n+t(y07 (,(JCU)) dw(t) y

whereww is the realization of the noise which is equalitdor a timen and then tav for a time
1. Using thea-priori bound (5.15) as well as assumptid®3 and B4, we thus see that there
exists a constan®' such that the choice

N — Cve—omn(l + K)OH_ﬁ ,
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ensures thab{")(w) is equal taD, () for w € BE,
We then have the estimate

[ (1= D)) () < [ (1= D)) Pla)
BK ’

/ (DI (w))? P(dw) — 1

_ 1/2
< ([ exp(6 [ G (@itev.), @y ) [Par) () 1
< exp(Ce (1 + K)*™) — 1.

If we taken > [1In(1 + K)/~, the exponent is bounded loy and there exists a constaft
such that
[ (0= D)’ P(dw) < Cle (1 + K)*,
BE,
thus validating AssumptioA5 with v, = ay and( = a + (.
The proof of Theorem 5.5 is complete. 0

6 Examples

Numerous recent results show that the invariant measure for the 2D Navier-Stokes equation
(and also for other dissipative PDES) is unique if a sufficient number of low-frequency modes
are forced by the noise [BKL0OOa, BKLOOb, EMS01, Mat01, EL01, KS00, KS01, MYO01]. These
results are not covered directly by Theorem 5.5, but some more work is needed. The reason is
that the setsi” defined in (3.5) are not the natural sets that allow to control the influence of the
low-frequency modes onto the high-frequency modes in the 2D Navier-Stokes equation.

On the other hand, our formulation of Theorem 5.5 makes it quite easy to verify that the
n-dimensional Ginzburg-Landau equation (in a bounded domain) shows exponential mixing
properties, if sufficiently many low-frequency modes are forced by the noise. We verify this in
the following subsection.

6.1 The Ginzburg-Landau equation
We consider the SPDE given by

du = (Au+u —u?) dt + Q dw(t) , u(0) = ug , (6.1)
where the function, belongs to the Hilbert space
H= LQ([_L7 L]na R) ’

andA denotes the Laplacean with periodic boundary conditions. The sy@hiiolt) stands as
a shorthand for

Qdw(t) = i gie; dwi(t) ,

where{q;}¥, is a collection of strictly positive numbers, denotes théth eigenvector of the
Laplacean, and the; are N independent Brownian motions (for some finite integér We
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also denote by, the eigenvalue oA corresponding te; and we assume that they are ordered
by ... < X < A\ < 0. We will see that it is fairly easy to construct a binding functi@rior
which the assumptions of the previous section hold Wif) = ||u||, where|| - || denotes the
norm of H.

In [DPZ96], it is shown that (6.1) possesses a unique mild solution for initial conditions
ug € L>®°([—L, L]™). Itis straightforward to extend this to every initial conditiop € H, by
using the regularizing properties of the heat semigroup. Thus, Assunfiitlds and we
denote byP! the transition probabilities of the solution at timstarting fromu. We have the
following result:

Theorem 6.1 There exist positive constanisand~, and a unique measuye, € .#,(H) such
that
IPe — el < Ce™ (1 + [full) (6.2)

for everyu € H and everyt > 0.

Proof. We verify that the assumptions of Theorem 5.5 hold. The bounds required for the veri-
fication of AssumptiorB2 can be found in [Cer99, DPZ96], for example.

It remains to construct the forcing: #> — R and to verify assumptiorB3 andB4. We
consider two copies; andu, of (6.1), with the noiselw replaced bylw + G dt in the second
copy. We also denote by= u, — u; the difference process. It satisfies the differential equation

0=200+0— o(ul +urus +u3) + Q G(uy,us) . (6.3)
We can project (6.3) onto the direction givendy This yields
ok = (Mx + Dok — (Q(U% +urug + Ug))k + @ Gr(ur, uz)
fork=1,...,Nand
O = (M + Dox — (Q(Uf + urus + ug))k :
for k > N. We choosé~, fork =1,...,N as

2+ A\
3

Gr(ur, ug) = — Ok -
SinceGy can only be defined this way if, # 0, we use at this point the fact that the noise
acts directly and independently emery unstable modé his requirement can be significantly
weakened with the help of Theorem 5.5. We will focus next on more degenerate problems
which illustrate the power of our technique.

This choice satisfies Assumpti@8. With this choice, we can write down the evolution of

the norm ofp as

dHQH2 _2< A >_2< ( 2+ + 2))
dt - 0, A0 0, o\ U U2 Uy )
with A the linear operator given by adding up the contributiohef1 and the contribution of7.
By the condition we imposed aoN, there exists a constamt> 0 such thatp, Ao) < —al|o||*.
Furthermore, one has

(0, 0(u? + uyuy +u2)) > 0.
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We thus have the differential inequality

dllo|l®
dt

< —2alle]*

which implies that
le®Il < e~ [[o(0)]

This implies by Remark 5.3 that AssumptiBd4 is also satisfied. The proof of Theorem 6.1 is
complete. 0

6.2 A reaction-diffusion system
Consider the following reaction-diffusion system:

du = (Au + 2u +v — u®) dt + dw(t) ,

6.4
dv = (Av +2v +u —v°)dt, (6-4)

where the pair«, v) belongs to the Hilbert space
H = Hu EB H’U = L2([_L7 L]7 R) EB L2([_L7 L]7 R) .

The symbolA again denotes the Laplacean with periodic boundary conditionsd@ansl the
cylindrical Wiener process oH,, (meaning that it is space-time white noise).

Notice that, because of the presence,dhis system does not satisfy the assumptions stated
in the papers mentioned at the beginning of this section. In other words, even though the forcing
Is infinite-dimensional, not all the determining modes for (6.4) are forced.

We take as our Lyapunov function

Vi(u,v) = [[ullo + V]l ,

with || - || the L norm. As in the previous subsection, one can show that with this choice
of V, our problem satisfies assumptidd$ andB2. We will now construct a binding function

G which satisfies assumptioit andB3. We consider, as in (5.5), two copies, (v;) and

(u2, v9) Of the system (6.4), but the noise is modified@yn the second copy. We also define
0y = Uus — uy andp, = vy — v;. We then have

@u = AQu + 2Qu + 0y — Qu(u% + urug + u%) + G(ub Uz, U1, U2) )

) ) ) (6.5)
Ov = AQ’U + 2@1} + 0u — Qv(vl + v1vg + UQ) .

Our construction of7 is inspired from the construction we presented in Section 1.1. We intro-
duce the variable = p, + 3p,. Substituting this in (6.5), it defines the functiéhif we impose
that the equation fof becomes

C=A¢—¢, (6.6)
so that|¢(2)||* < ||<(0)|*e~*. Notice that the functiot achieving this identity satisfies a bound
of the type

2
1G] < Clleull + lleul) (1 + [lualloo + l[uzlloo + lo1llee + [v2lloc)” s
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thus satisfying AssumptioB3. It remains to show that Assumpti@# is satisfied. The equa-
tion for g, reads
@v = AQv — Oy T+ C - QW(U% + v1v2 + U%) .

Therefore, the norm of, satisfies

L+ CO -,

o @I < o @ + =1

This in turn implies, through the definition gfand the bound of((¢)||, that a similar bound
holds for|| 0. (t)||. This shows that the bound (5.9) is satisfied. Similar estimates hold with the
L norm replacing the £.norm, and so AssumptioB4 is satisfied by Remark 5.3.

In fact, a straightforward computation, which can be found in [Cer99, Hai01, GMO01] for
example, shows that in this example, one can get a uniform estimate on the Lyapunov function
V. More precisely, there exists a constahsuch that for all initial conditions € H,

L VEP <C. 6.7)

Denoting byP; the semigroup acting on measures generated by the solutions of (6.4), we thus
have:

Theorem 6.2 There exists a unique probability measurec .#,(H) such thatP; . = p. for
everyt > 0. Furthermore, there exist constantsand~ such that

IPrv — sl < Ce, (6.8)
for everyv € #(H).

Proof. Combining (6.7) with the results of Theorem 4.1 and a computation similar to what
was done in the proof of Corollary 4.3, we get (6.8) for integer times. The generalization to
arbitrary times is straightforward, using the fact that the growth rate of the difference process
(0u, 0») (With G = 0) can easily be controlled. O

Remark 6.3 In fact, the dependence anin the right-hand side of (6.2) can be removed simi-
larly by checking that an estimate of the type (6.7) is verified for the solutions of the stochastic
Ginzburg-Landau equation (6.1).

6.3 A chain with nearest-neighbour interactions

In the previous example, the noise acted on infinitely many degrees of freedom in a non-
degenerate way. As a consequence, one step was sufficient to transmit the noise to the entire
system. We will now look at a much more degenerate system, where the noise acts oneonly
degree of freedom, although arbitrary number of modes are linearly unstable.

Our model is given by

dzo = (a®xo + 71 — 3) dt + dw |

6.9
iy =(a* —K)rp+ap 0 + e — 2y, k=1,2,..., (6.9)
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wherea € R is an arbitrary constant. One should think of the deterministic part of (6.9) as a
very simple model for a dissipative PDE of the Ginzburg-Landau type. We will consider (6.9)
in the (real) Hilbert spacé{ = ¢* endowed with its canonical orthonormal baéis }3°,. It

is easy to verify that (6.9) possesses a unique solution. We denote agBjntbg semigroup
acting on measurasc . (¢*) generated by (6.9). We will show

Theorem 6.4 For the problem (6.9), there exists a unique probability meagures .7, (¢?)
such thatP; i, = u. for everyt > 0. Furthermore, there exist constartsandy such that

1Py — |, < Ce™,
for everyv € .#,(H).

Proof. We will take as our Lyapunov functiol(x) = ||z||? for some power op to be fixed
later. It is a straightforward task to verify that the dynamics generated by (6.9) does indeed
satisfy assumptionB1 andB2 for this choice ofl/.

We next show that a bound of the type (6.7) holds for the solutions of (6.9), thus yielding
the uniformity in the convergence towards the invariant meaguré.et us define the process
y(t) € 2 by y(t) = 2(t) —w(t)ey. This process then satisfies the following system of differential
equations:

Yo = a*(yo + w) + y1 — (Yo +w)?
= (a® - 1)yl+yo+y2—yf+w, (6.10)
U = (@ — By + Yot + Yb1 — Ui k=23, ....

We denote by|y||, the norm given by supy,|. It follows from [Lun95] that (6.10) possesses
a strong solution for positive times. Furthermore, from (6.10) and the definition dof the -
norm, we see that there are constants, > 0 such that

D_||yllo

Wlee < eyl + 21+ o). 611)
where D_/ Dt denotes the left-handed lower Dini derivative. A straightforward computation
shows that (6.11) implies that there exists a constastich such that

19(1/2)]lc < C sup (14 |w(®)]),

t€[0,1/2]

independently of the initial condition. In order to conclude the proof of the estimate (6.7), it
suffices to show that there exists a constéarsuch that

Elly(1/2)[ < C(1 +[ly(0)]]s0) -

This follows easily from the dissipativity of the nonlinearitykfhand the fact that the semigroup
generated by the linear part of (6.10) is bounded f¢éhinto /2.

It remains to verify that the assumptioB4—B4 are indeed satisfied for some binding func-
tion G. This, together with the uniform bound obtained above, shows that the conclusions of
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Theorem 6.4 hold. As for the toy model presented in Section 1.1, we consider a pyecéss
governed by the same equation as (6.9), but withreplaced bydw + G(x,y)dt. We then
introduce the difference procegs= y — x, which is given by the solution of

do = a’00 + 01 — eo(xh + Toyo + ¥5) + G(z,y) , (6.12)
or = (@® — ) or + or1 + o1 — on(@} + Teyn + 33) -

The aim of the game is to find a functighfor which o(t) — 0 ast — oo. We can split (6.12)
into “low modes” and “high modes” by introducing

k. =inf{k >0|k*—a®>>3}.

At the level of the Hilbert spac€, we set®> = H;, @ Hy, whereH; ~ R* is generated by
€o, - - -, €x,—1 @aNdHy is its orthogonal complement. We denote gyand oy the components
of o and by Ay the restriction (as a symmetric quadratic form) of the linear part of (6.8);10
It is by construction easy to see that

(om, Amon) > |loull® -

As a consequence, we have firy||? the following estimate:

loa @ < e on(0)]* + i /t e *Gu(s)) P ds (6.13)
0

where we defined; = o, 1. (The reason for renaming,, ; this way will become clear
immediately.) It remains to construét in such a way to get good estimates |, (2)[|%. In
order to achieve this, we use again the same method as for the first toy model. The \ariable
obeys the equation

G = C10k,—1 + Ok, + Oko—2 — Qk*—l(xz*_1 + Tk, 1Yk, —1 T+ yi*_l) )

with some constant; € R. We thus introduce a new variahjgedefined by

G = (c1+ 1)0k.—1 + Ok, + Ok—2 — Ok—1(Th, _1 + Tho—1Yhom1 + Vi 1) -

It is important to notice two facts about this definition. The first is that it yieldgdg? the
estimate

GOP < GO+ [ ¢ IGEP ds . (6.14)
0

The second is thak can be written in the form

C? = Ok.—2 + QQ(Qamay) ’

where 9, is a polynomial depending only on componepfsx; andy; with i > k, — 1, and
such that each of its terms contains at least one fagtor

Now look at the equation faf,. It is clear from the structure @f and from the structure of
the equations (6.9) and (6.12) that it can be written as

G=—C+(,
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where
Cs = 0Ok,—3 + Qs(0,2,y) .

This time, the polynomial; depends only on components with an index k, — 2. This
procedure can be iterated, yielding a whole family of variables

Cl = Ok, —1 + Ql(@?'xvy) ’ (615)

where theQ, are polynomials depending only on indiges k, — [ + 1, and containing at least
one factorp; in each term. Furthermore, one gets for evgrhe estimate

GO < e 1GOF + ¢ [ IR ds. 616)
Notice that (6.16) is valid fof < k.. Forl = k., we have
Cho = Qreri0, 7, 9) + Gz, ) - (6.17)
It thus suffices to choos@ in such a way that (6.17) becomes
Cho = =G - (6.18)
Denoting by( the vector(y, . . ., (i, we get from (6.16) and (6.18) the estimate
IO < Ce™ ™IS, (6.19)

for any~ € (0, 1). Plugging this into (6.13) yields fdfoy || the estimate
lon®1* < Ce™ (o O)* + ICO)I*)
< Ce[[oO)[*(L + =) + Iy ©O))" ,

for some constant§’, v andp. It remains to get an estimate dn.||. From (6.19) and the
definition of ;, we get immediately

|0k 1O < Ce™ (o) I*(1 + [[(0)]] + ly(O)[])” -
From the definition of,, we get
lon—2(DF < C(IGMO + |Qa(et). 2(), y(®) ) -

But we know thatQ, only depends on components @fz, andy with an index: > k, — 1.
These are precisely the componentg oh which we already have an estimate. We thus get

|or. @) < Ce O *(1 + [l=O)] + lyO) + =) ,

for some other power. Here we used the fact thatt) = x(¢) + o(t) to get rid of||y(t)|| in the
estimate. The same reasoning can be applied. tg, and so forth down te,. We finally get

ler@I* < Ce™[[o(O)* (1 + 2O)I + [lyO)I + [l=(I)" . (6.20)

for some (large) power qgf. We thus verified (5.9a). The bound (5.9b) is obtained in the same
way, by noticing that we can as well get the estimate

lor®* < Ce™ o) (1 + [lz(O)[| + [lyO)| + [ly®I)"
instead of (6.20). The proof of Theorem 6.4 is complete. O
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Remark 6.5 The whole construction is strongly reminiscent of what was done in [EPR99D]
to control a finite Hamiltonian chain of non-linear oscillators with nearest-neighbour coupling
driven by thermal noise at its boundaries.

Remark 6.6 The linearity of the nearest-neighbour coupling is not essential for our argument.
We could as well have replaced (6.9) by
dzo = (a®zo + Vy(z1 — 20) — V{(20)) dt + dw ,
iy = (0 = B)ap 4+ Vi(@ro1 — 2x) + Vi (@rr — 2x) — V(1)

with V; andV; two polynomial-like functionsi.e smooth functions such that

d"Vi(x)

e " for |z| — o0,

for somea; > 2. Imposing the conditioi’'(x) > ¢ for somec > 0 yields an effective
coupling between neighbours at every point of the phase space. This is sufficient to apply our
construction.
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