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voudraiśegalement remercier ici ma famille ainsi que mes amis. J’espère qu’ils se reconnaı̂tront
tous sans que je doive les citer individuellement par peur d’une omission inévitable.

Je remercie aussi Donald Knuth et Leslie Lamport pour avoir d́evelopṕe TEX et LATEX res-
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7.3 The restricted Ḧormander condition . . . . . . . . . . . . . . . . . . . . . . . . .59
7.4 Estimates on the low-frequency derivatives (Proof of Proposition 5.3) . . . . . . . .64

8 Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
8.1 The noise term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
8.2 A deterministic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
8.3 Stochastic differential equations in Hilbert spaces . . . . . . . . . . . . . . . . . .71



8.4 Bounds on the cutoff dynamics (Proof of Proposition 5.1) . . . . . . . . . . . . . .72
8.5 Bounds on the off-diagonal terms . . . . . . . . . . . . . . . . . . . . . . . . . . .76
8.6 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

IV Exponential Mixing for a Stochastic PDE Driven by Degenerate Noise 77
1 Model and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
2 A Variant of the Perron-Frobenius Theorem . . . . . . . . . . . . . . . . . . . . . . . .79
3 Contraction Properties of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .81
4 Strong Feller Chains and Small Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

4.1 Existence of accessible small sets . . . . . . . . . . . . . . . . . . . . . . . . . . .83

V Exponential Mixing Properties of Stochastic PDEs Through Asymptotic Coupling 87
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

1.1 A toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
2 The Coupling Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
2.2 Definition of coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
2.3 The binding construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

3 Assumptions on the Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
3.1 Lyapunov structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
3.2 Binding property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

4 An Exponential Mixing Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
5 Application to Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . .106
6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

6.1 The Ginzburg-Landau equation . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.2 A reaction-diffusion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
6.3 A chain with nearest-neighbour interactions . . . . . . . . . . . . . . . . . . . . .115
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I. Introduction

Ce ḿemoire est consacré à l’étude asymptotique (à grand temps) des solutions d’équations
à d́erivées partielles paraboliques perturbées par une force aléatoire. Le probl̀eme principal
que nous abordons est la démonstration de l’existence et surtout de l’unicité d’un état station-
naire pour certaines classes d’équations. Le prototype des problèmes que nous considérons est
l’ équation de Ginzburg-Landau, donnée par

∂tu = ∂2
xu+ u− u3 , u(x, 0) = u0(x) , (0.1)

où u(x, t) est une fonction ŕeelle et ṕeriodique de ṕeriode2L enx. On peut consid́erer (0.1)
comme unéequation d’́evolution dans un espace de Hilbert abstraitH, par exempleH =
L2([−L,L],R). Il découle alors de résultats bien connus [Lun95] que les solutions de (0.1)
définissent un semiflot{ϕt}t≥0 surH, via la formuleu(x, t) = ϕt(u0)(x).

Deséquations du type (0.1) (comme par exemple aussi l’équation de Swift-Hohenberg qui
peutêtre trâıtée de la m̂eme manìere) servent̀a d́ecrire une multitude de problèmes physiques.
Quelques exemples sont donnés par la croissance d’interfaces, les flots de Couette-Taylor ou en-
core l’évolution d’unéchantillon dans lequel coexistent deux phases stables comme par exemple
un syst̀eme ferromagńetique. Dans un monde idéaliśe sans bruit, l’́equation d́eterministe (0.1)
donnerait une description correcte des phénom̀enes observ́es. Une formulation plus proche de
la nature est obtenue en ajoutant un terme de bruit. Il existe plusieurs causes physiques donnant
lieu à un tel bruit.

• Uneéquation du type (0.1) est géńeralement vue comme limite hydrodynamique d’une
dynamique microscopique sous-jacente. Tout système ŕeel est fini et comporte donc des
fluctuations dans les variables macroscopiques duesà cette dynamique microscopique.
Ainsi, il est possible de d́eriver la version stochastique de (0.1) comme limite macro-
scopique de la dynamique de Glauber (voir par exemple l’article de revue [GLP99]).

• L’interaction d’un syst̀eme avec un environnement aléatoire donnéegalement lieùa des
fluctuations dans les observables macroscopiques.

D’un point de vue aussi bien mathématique que physique, il estégalement int́eressant
d’étudier quelles caractéristiques de (0.1) sont préserv́ees sous des perturbations stochastiques
et lesquelles ne le sont pas.

Avant de discuter de l’effet d’un terme aléatoire sur cettéequation, cherchons̀a comprendre
sa dynamique d́eterministe. Pour une exposition détaillée de cette dynamique, nous renvoyons
le lecteur aux travaux [CP89, CP90, ER98, Rou99]. Calculons d’abord les points fixes de (0.1).
Il s’agit donc de trouver des solutions2L-périodiques̀a l’équation

∂2
xu+ u− u3 = 0 . (0.2)

Si l’on interpr̀ete la variableu comme une positionq et la variablex comme un temps, on voit
que l’équation (0.2) est́equivalente au système Hamiltonien

q̇ = ∂pH(p, q) , ṗ = −∂qH(p, q) , (0.3)
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Figure 1: Potentiel et lignes de niveau pour (0.3).

avec

H(p, q) =
p2

2
+ V (q) , V (q) = −1

4
(1− q2)2 .

La Figure 1 ci-dessus montre la forme du potentielV , ainsi que les lignes de niveau deH dans
l’espace (p, q). Les lignes dessińees en gras correspondent aux solutions périodiques de ṕeriode
2L pourL = 8.

En plus des trois solutions trivialesu ≡ 0 et u ≡ ±1, il existe dans ce cas deux familles
de points fixes paraḿetriśees par leur phase. Uneétude de stabilit́e permet de voir que les
points fixesu ≡ ±1 sont lińeairement stables, alors que les autres points fixes possèdent des
variét́es instables de dimension finie (dépendant de la valeur deL), voir par exemple [CP90].
L’ensemble de ces points fixes et de leurs variét́es instables d́efinit l’attracteurA de (0.1), en
d’autres termesA est un ensemble compact, invariant sous le semiflotϕt et qui attire chaque
ensemble borńe suffisamment grand.

Cet attracteurA caract́erise une partie du comportement asymptotique des solutions dans le
sens que toutes les solutions finiront par se trouver arbitrairement proches deA lorsqu’on fait
tendre le tempst vers l’infini. (Dans l’exemple consid́eŕe, on peut montrer que toutes solutions
convergent finalement vers un des points fixes du système.) Ńeanmoins, m̂eme si on peut d́efinir
des attracteurs stochastiques [CDF97], la notion d’attracteur (ou de point fixe) n’est pas très bien
adapt́eeà l’étude de systèmes perturb́es par du bruit, surtout si l’on s’intéressèa leurs propríet́es
statistiques, plut̂ot qu’au comportement d’une trajectoire particulière.

En effet,étant donńee une observableG du syst̀eme (c’est-̀a-dire une fonction mesurable et
borńeeG :H → R), on s’int́eresse souventà la convergence desmoyennes empiriquesdonńees
par

〈G〉 = lim
T→∞

1

T

∫ T

0
(G ◦ ϕt)(u0) dt . (0.4)

(On prendra l’esṕerance de l’expression de droite dans un contexte probabiliste.) Une telle
limite n’existe pas forćement et, m̂eme si elle existe, elle peut bien sûr dépendre de la condition
initiale u0. Dans notre cas, par exemple, on aura pour des observables continues〈G〉 = G(uf ),
où uf est le point fixe vers lequel la solution converge. Dans certains cas néanmoins, le système
perd la ḿemoire de sa condition initiale sous l’influence d’un bruit extérieur ou d’une chaoticité
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intrinsèque. Dans ce cas, il arrive que la limite (0.4) existe et soit la même pour “la plupart” des
conditions initialesu0. On peut alors trouver une mesureµ surH telle que, pour la plupart des
conditions initiales,

〈G〉 =
∫
H
G(u)µ(du) . (0.5)

Si une telle mesureµ existe, elle sera une mesure invariante pour (0.1).

De manìere ǵeńerale, unemesure invariantepour (0.1) est une mesure de Borelµ surH qui
reste inchanǵee lorsqu’on la transporte avec le semiflotϕt. En d’autres termes, une mesureµ
est invariante lorsque

µ(A) = µ(ϕ−1
t (A)) ,

pour tous les tempst ≥ 0 et pour tous les ensembles BoréliensA ⊂ H. Il ressort de la d́efinition
des moyennes empiriques que s’il existe une mesureµ satisfaisant (0.5), alorsµ est une mesure
invariante. En effet, notant parχA la fonction caract́eristique d’un ensembleA, on a

µ(ϕ−1
t (A)) =

∫
H
χϕ−1

t (A)µ(du) = 〈χϕ−1
t (A)〉 = lim

T→∞

1

T

∫ T

0
χϕ−1

t (A)(ϕs(u0)) ds

= lim
T→∞

1

T

∫ T

0
χA(ϕt+s(u0)) ds = lim

T→∞

1

T

∫ T+t

t
χA(ϕs(u0)) ds (0.6)

= 〈χA〉 = µ(A) .

On voit donc que l’́etude des mesures invariantes d’un système est primordiale dans la carac-
térisation de son comportement asymptotique.

Il ressort de la discussion sur la dynamique du système d́eterministe qu’il existe beaucoup
de mesures invariantes différentes pour (0.1). Il suffit de prendre par exemple une mesure de
Dirac concentŕee sur un des points fixes de l’équation. On peut se demander si, parmi toutes
ces mesures invariantes, il en existe une qui soit plus “naturelle” que les autres. Une manière de
caract́eriser une mesure invariante naturelle est de demander qu’elle soit stable sous l’addition
d’une perturbation stochastique au système. Dans le cas de certains systèmes chaotiques, les
mesures SRB (Sinai, Ruelle, Bowen) possèdent justement cette propriét́e [Col98]. Il est donc
intéressant de se demander combien de bruit il faut ajouterà un syst̀eme pour qu’il ne possède
plus qu’une seule mesure invariante.

L’avantage de consid́erer unéequation “bruit́ee” est que, dans de nombreux cas de figure,
son comportement asymptotique est beaucoup plus simpleà d́ecrire. En effet, nous verrons dans
les chapitres suivants que, même sous l’addition de “peu” de bruit, les solutions de la version
stochastique de (0.1) tendent vers une unique mesure invariante. Une question intéressante et
qui reste ouverte est de savoir s’il existe un moyen de faire tendre le bruit vers0 qui permette de
prouver que la suite de mesures invariantes ainsi obtenue possède une limite et pas seulement
des points d’accumulation. Cette limite serait alors un candidat naturel au titre de “mesure
SRB” pour un tel syst̀eme.



4 INTRODUCTION

1 Présentation du Mod̀ele et Formulation du Problème

Dans cette section, nous allons formuler plus préciśement de quelle manière un terme stochas-
tique est ajout́e à (0.1). Nous consid́erons l’́equation donńee formellement par

∂tu = ∂2
xu+ u− u3 +

∞∑
i=1

qiei∂twi , u(x, 0) = u0(x) . (1.1)

Dans cettéequation, lesqi sont des nombres positifs ou nuls uniformément borńes,{ei}∞i=1 est
une base orthonorḿee deH qui diagonalise l’oṕerateur lińeaire∂2

x et leswi sont des mouve-
ments Browniens ind́ependants, de manièreà ce que l’expression∂twi dénote un bruit blanc.

Uneéquation du type (1.1) est habituellementécrite sous la forme abstraite

du = Audt+ F (u) dt+QdW (t) , u(0) = u0 . (1.2)

Ici, A dénote l’oṕerateur lińeaire∂2
x de domaineD(A),F est l’oṕerateur nonlińeaireu 7→ u−u3

de domaineD(F ), Q est l’oṕerateur lińeaire borńe donńe parQei = qiei et W dénote un
processus de Wiener cylindrique surH, formellement donńe parW (t) =

∑∞
i=1 eiwi(t). Nous

désignons par (Ω,F ,P) l’espace de probabilité sous-jacent̀aW .
Nous appelons solution de (1.2) un processus stochastiqueu(t) à valeurs dansH tel que

u(t) ∈ D(F ) pourt > 0 et

u(t) = eAtu0 +
∫ t

0
eA(t−s)F (u(s)) ds+

∫ t

0
eA(t−s)QdW (s) . (1.3)

Pour une d́efinition rigoureuse de l’int́egrale stochastique apparaissant dans (1.3), voir par ex-
emple [DPZ92b]. Nous dirons que la solution de (1.3) définit un flot stochastique si les appli-
cations

ϕt( · , ω) : H → H
u0 7→ u(t, ω)

sont continues pourP-presque toutω ∈ Ω. Le th́eor̀eme d’existence suivant peutêtre d́erivé
facilement des ŕesultats pŕesent́es dans [DPZ96]:

Théorème 1 L’ équation (1.1) poss̀ede une unique solution qui définit un flot stochastiqueϕt.

Ce th́eor̀eme nous permet de définir, à l’aide du flot stochastiqueϕt, uneévolution sur les
observablesG, ainsi qu’unéevolution duale sur les mesuresµ par les formules:

(PtG)(u) = E(G ◦ ϕt)(u) , u ∈ H , (1.4a)

(P∗
t µ)(B) = E(µ ◦ ϕ−1

t )(B) , B ⊂ H . (1.4b)

Avec ces d́efinitions, une mesure invariante pour le problème (1.2) est simplement un point fixe
deP∗

t . Le probl̀eme que nous abordons dans ce travail est l’existence et l’unicité d’une telle
mesure invariante.

Dans le cadre du problème que nous venons de décrire, l’existence d’une mesure invariante
est relativement aiséeà obtenir. En effet, par le théor̀eme d’existence de Krylov-Bogolyubov



INTRODUCTION 5

[DPZ96], il suffit de montrer que, pour une mesureµ donńee, la suite des moyennes empiriques
donńees par

1

T

∫ T

0
P∗

t µ dt (1.5)

poss̀ede au moins un point d’accumulation lorsqueT → ∞. Ceci d́ecoule des propriét́es de
régularisation de l’oṕerateureAt. Ainsi, on peut montrer que les solutions de (1.1) appartiennent
presque ŝurement̀a un espace de SobolevW tel que l’inclusionW ⊂ H est compacte. De plus,
il est possible d’obtenir des estimations uniformes en temps sur les moments de la norme de la
solution dansW. Par conśequent, la suite des moyennes empiriques est tendue et possède donc
au moins un point d’accumulation (dans la topologie faible-*) [Bil68].

Néanmoins, nous verrons au Chapitre II une situation dans laquelle la preuve de l’existence
d’une mesure invariante n’est pas aussi simple. C’est le cas notamment lorsque la variable
spatialex n’est pas restreintèa un intervalle mais peut prendre ses valeurs sur toute la droite
réelle. En effet, l’oṕerateureAt n’est alors plus compact, ce qui complique l’argumentation
ci-dessus. Dans la suite de cette introduction, nous discuterons principalement le problème de
l’unicit é de la mesure invariante pour deséquations du type (1.2).

2 Unicité de la Mesure Invariante – Techniques de D́emonstration

Avant d’énoncer quelques résultats obtenus dans ce travail, nous donnons un bref aperçu his-
torique des ḿethodes connues et de leur champ d’application. Cet historique ne prétend pas
être exhaustif, mais il nous semble qu’il couvre les méthodes dont l’impact áet́e le plus impor-
tant dans la compréhension du problème. Pour un aperçu des principaux travaux couvrant les
deux premìeres ḿethodes pŕesent́ees ci-apr̀es, le lecteur se référeraà l’excellent travail de revue
de Maslovski et Seidler [MS99]. Un exposé d́etaillé des ŕesultats obtenus, ainsi que de leurs
démonstrations peutêtre trouv́e dans la monographie [DPZ96].

2.1 La méthode de la dissipativit́e

Cette ḿethode s’appliquèa des situations òu le probl̀eme lińeaire

u̇ = Au+ F (u) (2.1)

assocíe à (1.2) poss̀ede de bonnes propriét́es de dissipation. Une condition typique consisteà
imposer l’existence d’une constanteα > 0 telle que, pour toutes les fonctionsu etv appartenant
aux domaines deA et deF , on ait l’inégalit́e

〈Au− Av, u− v〉+ 〈F (u)− F (v), u− v〉 ≤ α‖u− v‖2 . (2.2)

Cette condition implique que le système d́eterministe poss̀ede un seul point fixe et que toutes
les solutions s’en approchent avec un taux exponentiel. On peut alors construire une suiteuT de
variables aĺeatoires obtenues enévaluant au tempst = 0 la solution du syst̀eme (1.2), avec pour
condition initialeu(−T ) = u0. Cette suite de variables aléatoires converge dans L2(Ω,P) vers
une vaiable aĺeatoireu∞, dont on peut montrer qu’elle ne dépend pas deu0. Cette convergence
est exponentielle avec un tauxα, comme on peut le voir intuitivement de la condition (2.2). La
loi deu∞ est la mesure invariante recherchée.

Remarquons encore que la méthode de la dissipativité ne d́epend que tr̀es peu de la nature du
bruit. Elle n’utilise d’ailleurs pas du tout le bruit pour obtenir l’unicité de la mesure invariante.
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2.2 La méthode du recouvrement

Contrairement̀a la ḿethode de la dissipativité, la ḿethode du recouvrement utilise le bruit de
manìere cruciale. D́enotons parPt(u, · ) la famille de mesures surH donnant les probabilités de
transitionà tempst pour les solutions de (1.2), c’est-à-dire que

Pt(u,B) = P(ϕt(u) ∈ B) .

La méthode du recouvrement est basée principalement sur la constatation suivante:

Proposition 2 Supposons qu’il existe un tempsT > 0 et une mesure positive (non-nulle)δ
telle quePt(u,B) ≥ δ pour tous lesu ∈ H. Alors, l’opérateurP∗

T défini dans (1.4b) est une
contraction sur les mesures de probabilité dans la norme de variation totale.

La démonstration de cet́enonće estélémentaire. Prenons deux mesures de probabilité µ et ν
mutuellement sigulìeres. Nous avons alorsP∗

Tµ ≥ δ et P∗
Tν ≥ δ. Il y a donc un recouvre-

ment de masse‖δ‖TV entre ces deux mesures. Ce recouvrement s’annule lorsque l’on prend la
diff érence et l’on a ainsi

‖P∗
Tµ− P∗

Tν‖TV ≤ (1− ‖δ‖TV)‖µ− ν‖TV .

Cette formule est aisément ǵeńeralisable au cas de deux mesures quelconques. Ceci implique
qu’il existe une et une seule mesure de probabilité invariante pour (1.2) et que la convergence
des probabilit́es de transition vers cette mesure invariante est exponentielle dans la norme de la
variation totale. En ǵeńeral, un syst̀eme donńe ne montrera pas un recouvrement aussi uniforme
que ce que nous supposons dans la Proposition 2, mais l’idée sera la m̂eme.

La technique habituelle afin d’obtenir une estimation sur le recouvrement est de vérifier les
trois propríet́es suivantes pour les solutions de (1.2).

(a) La dynamique est fortement Feller, c’est-à-dire que l’oṕerateurPt défini en (1.4a) envoie
les fonctions borńees mesurables sur des fonctions bornées continues.

(b) La dynamique est topologiquement irréductible, c’est-̀a-dire que les probabilités de tran-
sition satisfontPt(u,B) > 0 pour toutu ∈ H et pour tout ouvertB ⊂ H.

(c) Il existe un compactK qui attire les solutions, dans le sens où les temps de retour vers
K et les temps d’entrée dansK sont bien contr̂olés.

Les deux premìeres propríet́es suffisent d́ejà, par le th́eor̀eme de Doob [Doo48],̀a garantir
l’unicit é de la mesure invariante (si elle existe). La difficulté technique principale consisteà
démontrer que la dynamique est fortement Feller. Cette difficulté est ŕesolue en dimension finie
par le crit̀ere de Ḧormander [Ḧor67, Ḧor85, Mal78, Str86, Nor86]. Ce critère dit que, pour que
la dynamique ǵeńeŕee par les solutions de l’équation de Stratanovitch

dx = f0(x) dt+
m∑

i=1

fi(x) ◦dωi , x ∈ Rn , (2.3)

soit fortement Feller, il est suffisant que les champs de vecteurs

fi , [fi, fj] , [[fi, fj], fk] , . . . i = 1, . . . ,m , j, k = 0, . . . ,m ,
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engendrent toutRn en chaque point. Dans cette expression [·, ·] désigne le crochet de Lie entre
deux champs de vecteurs (qui estégal au commutateur, si on interprète les champs de vecteurs
comme des oṕerateurs diff́erentiels). Malheureusement, il n’existe pas encore de critère ǵeńeral
équivalent en dimension infinie. Un outil très utile en dimension infinie est la formule de
Bismut-Elworthy [Bis84, EL94]. Celle-ci permet d’exprimer la dérivée dePtG en terme de
G et du flotϕt de la manìere suivante:

(DPtG)(u)h =
1

t
E
(
(G ◦ ϕt)(u)

∫ t

0

〈
Q−1(Dϕs)(u)h, dW (s)

〉)
. (2.4)

Néanmoins, afin de pouvoir utiliser la formule (2.4), il faut que l’image de l’opérateurQ con-
tienne l’image deDϕs. Cette formule n’est donc applicable telle quelle pratiquement que dans
des situations òu l’image deQ est dense dansH.

2.3 La méthode du couplage

De manìere ǵeńerale, si l’on se donne une mesure de probabilité µ sur un espaceM et une
mesure de probabilité ν sur un espaceN , un couplagepour la paire (µ, ν) est la donńee d’une
mesure de probabilité P surM × N , telle que les marginales deP (donc les projections deP
surM etN ) sont pŕeciśementµ et ν. Ce que l’on appelle un couplage pour (1.2) est donc la
donńee d’un processus stochastique(u(t), v(t)), tel queu etv pris śepaŕement sont des solutions
de (1.2) (avec pour conditions initialesu0 et v0). S’il est possible de construire ce couplage de
manìereà ce que la distance entreu et v tende vers źero pour de grands temps, l’unicité de la
mesure invariante suit (voir Section 3.2 ci-après).

La méthode du couplage et son application aux problèmes d’ergodicit́e et d’unicit́e de l’́etat
stationnaire ont une longue histoire. Les premières applications semblent remonter aussi loin
que Doeblin [Doe38] dans l’étude de châınes de Markov ayant un nombre fini d’états. Dans un
contexte et une formulation un peu plus proches de ce que nous abordons dans ce mémoire, cette
technique áet́e utilisée par Vaserštĕın et Dobrǔsin [Vas69, Dob71] dans l’étude de systèmes de
spins. Ce domaine d’application a donné lieu à une multitude de travaux; pour un travail de
revue de cettéepoque, nous renvoyons le lecteurà [Lig77].

A notre connaissance, la méthode du couplage a pour la première foisét́e appliqúee dans
le cadre deśequations̀a d́erivées partielles stochastiques dans [Mue93]. L’idéeétait alors de
choisir le couplage de manièreà ce que, lorsqueu s’approche dev, les deux processus s’attirent
et finalement se “collent” l’uǹa l’autre. Une fois qu’ils sont collés dans une région spatiale, ils
y restent colĺes pour les temps futurs. Plus préciśement, le couplage est fait de manièreà ce que
le processus% = |u− v| se comporte comme les solutions de

d% = ∆% dt+ %1/2 dW (t) .

Il est bien connu que les solutions de cetteéquations atteignent% ≡ 0 en temps fini avec pro-
babilité1. Cette techniquèa également́et́e appliqúee avec succ̀esà l’étude de de la propagation
de fronts pour l’́equation de Kolmogorov-Petrovskii-Piscuinov avec bruit [MS95c].

Beaucoup plus récemment, un autre type de construction pour la méthode du couplage est
apparu dans une série d’articles sur les propriét́es ergodiques de l’équation de Navier-Stokes
bidimensionelle (voir [KS01, Mat01, MY01] et les références donńeesà la Section V.6). L’id́ee
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qui apparâıt dans ces travaux est de décomposer l’espaceH en une partie “stable”Hs et une
partie “instable”Hu et de supposer que le bruit agit sur la partie instable, c’est-à-dire que
l’image deQ estégaleà (ou du moins contient)Hu. On supposera de plus que la partie linéaire
A laisse invariante cette décomposition. L’́equation (1.2) devient alors

duu = Auuu dt+ Fu(uu, us) dt+QdW (t) , (2.5a)

dus = Asus dt+ Fs(uu, us) dt . (2.5b)

Dans cette d́ecomposition, on choisira la partie stableHs de manìere à ce que,́etant donńee
une trajectoireuu, deux solutions quelconques de l’équation (2.5b) avec des conditions initiales
diff érentes convergent toujours l’une vers l’autre.

D’autre part, comme le bruit agit de façon non-déǵeńeŕee sur la partie instable (2.5a), il y
a un moyen de construire un couplage(u(t), v(t)) avect ∈ [0, 1], tel queuu(1) = vu(1) avec
une probabilit́e non-nulle, quelles que soient les conditions initialesu(0) et v(0). Ces deux
constatations permettent alors de construire un couplage(u(t), v(t)) (cette fois avec le temps
t ∈ [0,∞)), tel qu’il existe un temps aléatoireτ avec la propríet́e queuu(t) = vu(t) pour tous
les tempst ≥ τ . Si on peut montrer queτ est presque ŝurement fini, l’unicit́e de la mesure
en d́ecoule. On peut́egalement obtenir des estimations sur la vitesse de convergence vers cette
mesure invariante si l’on sait estimerτ , ainsi que le taux de stabilité de (2.5b).

Dans ce ḿemoire, nous appliquerons aux chapitres III et IV la méthode du recouvrement
à une situation òu l’image deQ n’est pas dense dansH, en combinant un argumentà la
Hörmander avec une version modifiée de la formule de Bismut-Elworthy. Nous géńeraliserons
également au Chapitre V la méthode du couplagèa des situations òu le bruit agit de façon
déǵeńeŕee sur la partie instable de l’équation. Une pŕesentation plus d́etaillée de ces résultats
est l’objet de la section suivante.

3 Unicité de la Mesure Invariante – Ŕesultats Obtenus

3.1 Méthode du recouvrement pour des situations d́eǵenérées

Dans cette partie du ḿemoire, qui fera l’objet des chapitres III et IV, nous considérons l’́equa-
tion de Ginzburg-Landau stochastique donnée par

∂tu = ∂2
xu+ u− u3 +

∞∑
i=1

qiei∂twi , u(x, 0) = u0(x) , (3.1)

avecx ∈ [−L,L] et des conditions aux bords périodiques pouru. Pour des raisons tech-
niques, nous considérons cettéequation non pas dans l’espace L2([−L,L]), mais dans l’espace
de SobolevH = W (1,2)([−L,L]) des fonctions ṕeriodiques dans L2 et à d́erivée dans L2. Nous
dénotons de plus parPt(u, · ) les probabilit́es de transition surH induites par la solution de (3.1).

Nous supposons qu’il existe des constantesc1, c2 et k∗, ainsi que des exposantsα et β
satisfaisant

α ≥ 4 et α− 1/4 < β ≤ α , (3.2)

tels que
c1k

−α ≤ qk ≤ c2k
−β pourk ≥ k∗. (3.3)
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Remarquons qu’aucune supposition n’est faite sur la taille dek∗, ni sur les valeurs deqk pour
k < k∗. Ces valeurs deqk peuvent par exemplêetre choisies nulles. Notre résultat est alors le
suivant.

Théorème 3 Supposons que les valeursqk satisfassent (3.3). Alors, l’équation (3.1) poss̀ede
une unique mesure invarianteµ∗ surH et il existe des constantesC, γ > 0 telles que

‖Pt(u, · )− µ∗‖TV ≤ Ce−γt ,

pour toutt ≥ 0 et pour toutu ∈ H.

Voici les idées principales permettant de démontrer ce th́eor̀eme. La d́emarche ǵeńerale
consistèa vérifier les propríet́es (a), (b) et (c) de la Section 2.2. La difficulté technique principale
consistèa montrer que la dynamique est fortement Feller. L’irréductibilit́e topologique (b) peut
être montŕee de la manière suivante. On se donne une condition initialeui ∈ H, un tempsτ > 0
et une “cible”uf ∈ H. On peut alors montrer que pour toutε > 0, il existe une fonction lisse
F : [0, τ ] → H, telle que la solutionu(t) de l’équation

u̇ = ∆u+ u− u3 + F (t) , u(0) = ui ,

satisfait‖u(τ )− uf‖ ≤ ε. On montre ceci “brutalement” en construisant explicitement la fonc-
tion F . On a ainsi construit pour chaque cible une réalisation du bruit qui am̀ene les solutions
arbitrairement pr̀es de la cible en un temps donné. Il est intuitivement clair que ceci est suffisant
pour avoir l’irréductibilit́e topologique. L’́egalit́e entre le support des probabilités de transition
et l’ensemble atteignable du problème de contr̂ole assocíe aét́e montŕe pour la premìere fois en
dimension finie dans [SV72].

La propríet́e (c) découle imḿediatement de la dissipativité tr̀es forte de ce système. Le terme
−u3 oblige les solutions̀a rester relativement près de l’origine et le terme∆u les ŕegularise,
fournissant la compacité cherch́ee.

Il reste donc̀a montrer la propríet́e (a), à savoir que la dynamique est fortement Feller. Nous
nous contenterons dans cette introductionà montrer que l’́equation (3.1) satisfait formellement
la condition de Ḧormander. Afin de simplifier les notations, nous nous restreignons au cas de
fonctions paires et réellesu(x) = u(−x) = ū(x). Dans ce cas, les coefficients de Fourier deu
satisfontuk = u−k = ūk. L’ équation (3.1) peut alors s’écrire comme

duk = (1− k2)uk dt−
∑

`+m+n=k

u`umun dt+ qk dωk , k, `,m, n ∈ Z .

Le terme important dans cette expression est celui correspondantà la nonlińearit́e cubique. En
effet, on voit que ce terme est le seul qui couple les différents modes de Fourier entre eux. Si
on interpr̀ete ce terme comme un champ de vecteurs (de dimension infinie), on peut l’écrire
comme

f0 =
∑

`,m,n

u`umun ∂`+m+n ,

où ∂k désigne l’oṕerateur de d́erivation dans la directionuk. Les champs de vecteurs décrivant
le bruit sont donńes pargk = qk ∂k. Ces champs peuventéventuellement̂etre nuls pour|k| < k∗.
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Un calculélémentaire donne alors[
g`, [gm, [gn, f0]]

]
∝ q`qmqn

∑
k=±`±m±n

∂k .

Comme tout nombre entre−k∗ et +k∗ peut s’́ecrire comme une somme de trois nombres, on
voit que, du moins au niveau formel, trois commutateurs suffisent pour engendrer tout l’espace.

3.2 Généralisation de la méthode du couplage

Dans cette partie du ḿemoire, qui fera l’object du Chapitre V, nous décrirons une manière de
construire un couplage (u, v) tel que‖u(t) − v(t)‖ converge exponentiellement vers0 lorsque
t → ∞. Une telle construction implique alors immédiatement l’unicit́e de la mesure invari-
ante, ainsi que la convergence exponentielle des probabilités de transition vers cette mesure
invariante.

Notre construction diff̀ere de celle d́ecriteà la Section 2.3 par le fait que nous remplaçons
la condition que les parties “instables”uu et vu se rencontrent en un temps fini par celle,
plus faible, qu’elles convergent (exponentiellement) l’une vers l’autre. Cette condition per-
met d’́etendre la ḿethode du couplagèa certaines situations où le bruit agit seulement de
manìere d́eǵeńeŕee sur la partie instable de l’équation et òu les ḿethodes de couplage décrites
préćedemment font d́efaut. Dans cette introduction, nous considérons le mod̀ele donńe par le
syst̀eme d’́equations suivant:

du0 = (a2u0 + u1 − u3
0) dt+ dω ,

u̇k = (a2 − k2)uk + uk−1 + uk+1 − u3
k , k = 1, 2, . . .

(3.4)

Ici, a ∈ R dénote une constante que l’on peut choisir arbitrairement etω est un mouvement
Brownien unidimensionnel. Nous choisissons de considérer l’équation (3.4) dans l’espace de
HilbertH = `2. On peut voir (3.4) comme un modèle simplif́e pour deśequations̀a d́erivées
partielles du type Ginzburg-Landau. Remarquons encore que le bruitω n’agit que sur le mode
0, alors que tous les modes jusqu’à k = |a| sont lińeairement instables. Ńeanmoins, chaque
mode est couplé à ses voisins, ce qui a pour conséquence une transmission du bruità tous les
modes du système. C’est ce couplage que nous exploiterons par la suite pour notre construction.
Comme pŕećedemment, nous dénotons parPt(u, · ) les probabilit́es de transition surH induites
par la solution de (3.4). Notre résultat est alors le suivant.

Théorème 4 L’ équation (3.4) poss̀ede une unique mesure invarianteµ∗ surH et il existe des
constantesC, γ > 0 telles que

‖Pt(u, · )− µ∗‖L ≤ Ce−γt ,

pour toutt ≥ 0 et pour toutu ∈ H.

La norme‖ · ‖L apparaissant dans cetteéquation est la norme dualeà la norme de Lipschitz,
c’est-̀a-dire que

‖µ− ν‖L = sup
{∫

H
G(u) (µ− ν)(du)

∣∣∣∣ |G(u)| ≤ 1 , |G(u)−G(v)| ≤ ‖u− v‖ , ∀u, v ∈ H
}
.
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Cette norme d́efinit une topologie plus faible que la norme de la variation totale apparaissant
dans la section préćedente. Un exemple qui permet de voir la différence entre ces deux normes
est la suite de mesures surR donńee par

µn = δ1/n , µ∞ = δ0 ,

où δx dénote la mesure de Dirac concentrée au pointx. On a alors‖µn − µ∞‖L = 1/n, mais
‖µn − µ∞‖TV = 2.

Nous donnons maintenant l’idée principale permettant de démontrer le Th́eor̀eme 4. Notre
technique consistèa construire un couplage (u, v) pour (3.4) tel que‖u − v‖ → 0 exponen-
tiellementà grand temps. Supposons qu’un tel couplage existe et que l’on ait une estimation du
type

P
(
‖u(t)− v(t)‖ > C1ε

−γ1t
)
≤ C2e

−γ2t . (3.5)

Par la d́efinition de la norme de Lipschitz, on voit que l’estimation ci-dessus implique pour les
probabilit́es de transition que

‖Pt(u0, · )− Pt(v0, · )‖L ≤ C1ε
−γ1t + 2C2e

−γ2t .

Les probabilit́es de transition pour deux conditions initiales différentes convergent donc l’une
vers l’autre. Si on a de plus une certaine uniformité des constantesC1 etC2 sur un ensemble
qui attire les solutions, on peut montrer que les probabilités de transitionPn(u0, · ) forment une
suite de Cauchy et possèdent donc une limiteµ∗. Il est simple de v́erifier queµ∗ est une mesure
invariante.

Il reste donc̀a construire le couplage en question. Soit (Ω,F ,W) l’espace de probabilité
sous-jacent̀a un processus de Wiener. Si (ω, ω̃) est une variable aléatoireà valeurs dansΩ× Ω
distribúee selon une mesureP telle que les marginales deP sur chacune des deux copiesΩ sont
égales̀aW, un couplage pour (3.4) est donné par les solutions de

du0 = (a2u0 + u1 − u3
0) dt+ dω ,

u̇k = (a2 − k2)uk + uk−1 + uk+1 − u3
k ,

dv0 = (a2v0 + v1 − v3
0) dt+ dω̃ ,

v̇k = (a2 − k2)vk + vk−1 + vk+1 − v3
k , k = 1, 2, . . .

L’id ée principale dans la construction deP est de consid́erer l’équation

du0 = (a2u0 + u1 − u3
0) dt+ dω ,

u̇k = (a2 − k2)uk + uk−1 + uk+1 − u3
k ,

dv0 = (a2v0 + v1 − v3
0) dt+G(u, v) dt+ dω ,

v̇k = (a2 − k2)vk + vk−1 + vk+1 − v3
k , k = 1, 2, . . .

(3.6)

avec pourG une fonction telle que les solutions de (3.6) satisfont une estimation du type (3.5).
Cetteéquation n’est pas encore un couplage pour (3.4), puisque le processus

ω̃(t) = ω(t) +
∫ t

0
G(u(s), v(s)) ds
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n’est pas distribúe selon la mesure de Wiener. Il est néanmoins possible de construire un cou-
plage tel qu’il existe un temps aléatoireτ ayant la propríet́e que le processus (u, v) satisfait
l’ équation (3.6) pour des tempst > τ . On peutégalement trouver des estimations sur la taille
deτ .

Il ne reste donc plus qu’à construire la fonctionG. On consid̀ere pour ceci le processus
donńe par% = v − u. On a alors (si on d́efinit %−1 = 0):

%̇k = (a2 − k2)%k + %k+1 + %k−1 − %k(u
2
k + ukvk + v2

k) + δk,0G(u, v) . (3.7)

On voit bien que, gr̂ace au terme en−k2, il existe une valeur̃k telle que l’́equation ci-dessus est
stable pourk > k̃. Si nous trouvons unG tel que les modes aveck ≤ k̃ tendent vers0, les autres
vont donc suivre automatiquement. La construction que nous utilisons ensuite pour trouverG
est similairèa une construction utiliśee dans [EPR99b] pour contrôler une châıne d’oscillateurs
coupĺes par ses extrémit́esà des ŕeservoirs thermiques. Leséquations (3.7) exhibent un couplage
par plus proches voisins. Comme ce couplage est non-déǵeńeŕe on voit que, si l’on obtient d’une
manìere ou d’une autre le contrôle sur%k̃−1, on peutà travers ce couplage forcer%k̃ à tendre
vers0. Par le m̂eme raisonnement, on peut obtenir le contrôle sur%k̃−1 si on a le contr̂ole sur
%k̃−2, etc. Ce raisonnement peutêtre poursuivi en descendant les modes jusqu’à arriver au mode
0, sur lequel on a justement un bon contrôle via la fonctionG. On peut donc de cette manière
faire tendre%k̃ vers0.

Enfin, il est possible de démontrer, en regardant en détail la construction ainsi obtenue, que
non seulement%k̃ tend vers0, maiségalement tous les autres modes. Ceci achève la d́emon-
stration du Th́eor̀eme 4.

4 Conclusions et Perspectives

Dans ce travail, nous avons géńeraliśe les ḿethodes du recouvrement et du couplage, afin de
pouvoir les appliquer dans des situations qui n’ont jusqu’alors pas puêtre étudíees. Nous
avons fait la plupart de nos estimations sur l’exemple concret de l’équation de Ginzburg-Landau
stochastique, mais une partie des résultats se ǵeńeralisent́egalement̀a d’autres situations (voir
les Exemples̀a la fin du Chapitre V). Il reste en tous cas trois questions ouvertes qui nous
semblent int́eressantes:

• Quel est le nombre minimal de modes qu’il faut forcer pour que l’équation de Ginzburg-
Landau stochastique (réelle ou complexe) sur un intervalle ne possède qu’une seule
mesure invariante?

• La suite de mesures invariantes pour (3.1) obtenue en faisant tendrek∗ vers l’infini
poss̀ede-t-elle une limite?

• Est-ce que la mesure invariante pour l’équation de Ginzburg-Landau en domaine infini
est unique si une bande de fréquences seulement est forcée par le bruit?

Dans les deux cas, la partie déterministe de l’́equation peut̂etre remplaćee par n’importe quelle
autreéquationà d́erivées partielles comportant une certaine instabilité (comme par exemple
l’ équation de Navier-Stokes en deux dimensions).

La suite de ce travail (en anglais) est structurée de la manière suivante. Au Chapitre II, nous
consid́erons l’́equation de Ginzburg-Landau stochastique sur la droite réelle et nous montrons
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que l’on peut obtenir l’existence d’une mesure invarianteà l’aide des propríet́es analytiques de
ses solutions. Au Chapitre III, nous considérons l’́equation de Ginzburg-Landau en domaine
borńe avec un bruit n’agissant que sur les hautes fréquences. Nous montrons que sa dynamique
est fortement Feller et topologiquement irréductible, ce qui implique l’unicité de sa mesure
invariante. Au Chapitre IV, nous montrons que la convergence vers cette mesure invariante
s’effectue de façon exponentielle, en utilisant la méthode du recouvrement. Au Chapitre V en-
fin, nous utilisons la ḿethode du couplage pour démontrer l’unicit́e de la mesure invariante dans
des situations tr̀es d́eǵeńeŕees òu le bruit est de dimension finie et agit seulement indirectement
sur les modes d́eterminants du système.

Les chapitres II et III sont des reproductions des articles [EH01a] et [EH01b] respective-
ment. Ces deux publications ontét́e ŕealiśees en collaboration avec J.-P. Eckmann.





II. Invariant Measures for Stochastic PDE’s
in Unbounded Domains

Abstract

We study stochastically forced semilinear parabolic PDE’s of the Ginzburg-Landau type. The
class of forcings considered are white noises in time and colored smooth noises in space. Exis-
tence of the dynamics in L∞, as well as existence of an invariant measure are proven. We also
show that the solutions are with high probability analytic in a strip around the real axis and give
estimates on the width of that strip.

1 Introduction

We consider the stochastic partial differential equation (SPDE) given by

duξ(t) = ∆uξ(t) dt+ (1− |uξ(t)|2)uξ(t) dt+QdW (t) ,

uξ(0) = ξ , ξ ∈ L∞(R) .
(SGL)

In this equation,dW (t) denotes the canonical cylindrical Wiener process on the Hilbert space
L2(R, dx), i.e.we have the formal expression

E(dW (s, x) dW (t, y)) = δ(s− t)δ(x− y) ds dt .

Think for the moment ofuξ(t) as a distribution on the real line. We will introduce later the
space of functions in which (SGL) makes sense. The symbolQ denotes a bounded operator of
the typeQf = ϕ1 ? (ϕ2 f ) whereϕ̂1, the Fourier transform ofϕ1, is some positiveC∞0 function
andϕ2 is some smooth function that decays sufficiently fast at infinity to be square-integrable.
In fact, we will assume for convenience that there are constantsc > 0 andβ > 0 such that

|ϕ2(x)| ≤ c

〈〈x〉〉1/2+β
, 〈〈x〉〉 ≡

√
1 + x2 . (1.1)

The space in which we show the existence of the solutions isCu(R), the Banach space of
complex-valued uniformly continuous functions. The reason of this choice is that we want to
work in a translational invariant space which is big enough to contain the interesting part of
the dynamics of the deterministic part of the equation,i.e. the three fixed points0 and±1, as
well as various kinds of fronts and waves. The meaning of the assumptions onϕ1 andϕ2 is the
following.

• The noise does not shake the solution too badly at infinity (in the space variablex). If it
did, the solution would not stay in L∞.

• The noise is smooth inx (it is even analytic), so it will not lead to irregular functions in
x-space. This assumption is crucial for our existence theorem concerning the invariant
measure.
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For convenience, we write (SGL) as

duξ(t) = (Luξ(t) + F (uξ(t))) dt+QdW (t) ,

L = ∆− 1 , (F (u))(x) = u(x) + (1− |u(x)|2)u(x) .
(1.2)

This is also to emphasize that our proofs apply in fact to a much larger class of SPDE’s of the
form (1.2). For example, all our results apply to the stochastically perturbed Swift-Hohenberg
equation

duξ(t) = (1−∆)2uξ(t) dt+ (1− |uξ(t)|2)uξ(t) dt+QdW (t) ,

but one has to be more careful in the computations, since one does not know an explicit formula
for the kernel of the linear semigroup. It is also possible to replace the nonlinearity by some
slightly more complicated expression ofu(t).

For any Banach spaceB, a B-valued stochastic processuξ(t) is called amild solutionof
(1.2) with initial conditionξ, if it satisfies the associated integral equation

uξ(t) = eLtξ +
∫ t

0
eL(t−s)F (uξ(s)) ds+

∫ t

0
eL(t−s)QdW (s) , (1.3)

in the sense that every term defines a stochastic process onB and that the equality holds almost
surely with respect to the probability measure on the abstract probability space underlying the
Wiener process. The initial condition does not have to belong toB, providedeLtξ ∈ B for all
timest > 0.

To a Markovian solution, we can associate (under suitable conditions) thetransition semi-
groupPt defined on and into the set of bounded Borel functionsϕ : B → C by

(Ptϕ)(ξ) =
∫
B
ϕ(η)P(uξ(t) ∈ dη) . (1.4)

Its dual semigroupP∗
t is defined on and into the set of Borel probability measuresν onB by

(P∗
t ν)(Γ) =

∫
B

P(uξ(t) ∈ Γ) ν(dξ) , (1.5)

whereΓ is aB-Borel set. If the existence of the solutions is shown for initial conditions in a
larger Banach spaceB′ in which B is continuously embedded,P∗

t can be extended to a map
from theB′-Borel probability measures into theB-Borel probability measures.

An invariant measurefor (1.2) is a probability measure onB which is a fixed point forP∗
t .

If T is a weaker topology onB, we can under appropriate conditions extendP∗
t by (1.5) to

a mapping from theT -Borel probability measures into themselves. In the case of L∞(R), we
may for example consider a “weighted topology”T% induced by some weighted norm‖% · ‖∞.

If we takeϕ2(x) = 1, it is known (we refer to [DPZ96] for details) that (1.2) possesses a mild
solution in Lp(R, %(x) dx) for a weight function% that decays at infinity. Our choice forQmakes
it possible to work in flat spaces, since the noise is damped at infinity. In fact, we will show that,
for every initial conditionu0 ∈ L∞(R), (1.2) possesses a mild solution inCu(R), the space of
bounded uniformly continuous functions onR. This leads to slight technical difficulties since
neither L∞(R) norCu(R) are separable Banach spaces, and thus standard existence theorems
do not apply.
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After proving the existence of the solutions, we will be concerned with their regularity. We
prove that with high probability the solutionuξ(t) of (SGL) for a fixed time is analytic in a strip
around the real axis. We will also derive estimates on the width of that strip. These estimates
will finally allow to show the existence of an invariant measure forP∗

t , provided we equip
Cu(R) with a slightly weaker topology. The existence of an invariant measure is not a trivial
result since

a. The linear semigroup of (SGL) is not made of compact operators inCu(R).

b. The deterministic equation is not strictly dissipative, in the sense that there is not a unique
fixed point that attracts every solution.

c. The deterministic equation is of the gradient type, but the operatorQ is not invertible, so
we can not make thea priori guess that the invariant measure is some Gibbs measure.

The results we found in the literature about the existence of invariant measures for infinite-
dimensional stochastic differential equations (seee.g.[JLM85, DPZ92a, DPZ96, BKL00a] and
references therein) usually assume that the converse of eithera., b. or c. holds. The main result
of this paper is the following.

Theorem 1.1 There exist slowly decaying weight functions% such that the extension ofP∗
t to

theT%-Borel probability measures is well-defined and admits a fixed point.

Remark 1.2 The hypotheses of this theorem have been made with the following future project
in mind. We hope to prove that the measure found in Theorem 1.1 isunique. The basic idea is
to apply the methods of [EPR99b] to the context of SPDE’s to show uniqueness of the measure
by the tools of control theory. In this context, it is interesting if the noise drives the system
only in the dissipative range, namely in afinite interval of frequencies which need not contain
the unstable modes of the deterministic Ginzburg-Landau equation. In particular, such forces
do not have invertible covariances and hence methods such as those found in [DPZ96] do not
apply.

This is also the reason why the setting considered in this paper imposesϕ̂1 to have compact
support, although the extension to exponentially decaying functions would have been easy.

The next sections will be organized as follows. In Section 2, we give detailed bounds on the
stochastic convolution,i.e. on the evolution of the noise under the action of the semigroup
generated byL. In Section 3 we then prove the existence of a unique solution for (1.2) and
derive ana priori estimate on its amplitude. Section 4 is devoted to the study of the analyticity
properties of the solution. In Section 5, we finally show the existence of an invariant measure for
the dynamics,i.e. we prove Theorem 1.1 which will be restated as Theorem 5.4. The appendix
gives conditions under which one can prove the existence of a global strong solution to a class
of semilinear PDE’s in a Banach space.

1.1 Definitions and notations

Consider the setsAη of functions that are analytic and uniformly bounded in an open strip of
width 2η centered around the real axis. They are Banach spaces with respect to the norms

|||f |||η,∞ ≡ sup
z : |Imz|<η

|f (z)| .
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Fix T > 0. We defineBT as the Banach space of functionsf (t, x) with t ∈ (0, T ] andx ∈ R
such that for fixedt > 0, f (t, ·) is analytic and bounded in the strip{z = x + iy | |y| <

√
t}.

We equipBT with the norm

|||f |||T ≡ sup
t∈(0,T ]

|||f (t, z)|||√t,∞ .

In the sequel we denote by‖ · ‖p the norm of Lp(R, dx). For M a metric space andB a
Banach space, the symbolCb(M,B) (resp.Cu(M,B)) stands for the Banach space of bounded
(uniformly) continuous functionsM → B endowed with the usual sup norm. IfB = C, it
is usually suppressed in the notation. Moreover, the symbolC denotes a constant which is
independent of the running parameters and which may change from one line to the other (even
inside the same equation).

The symbolL (X) denotes the probability law of a random variableX. The symbolB(M, r)
denotes the open ball of radiusr centered at the origin of a metric vector spaceM .

2 The Stochastic Convolution

This section is devoted to the detailed study of the properties of the stochastic process obtained
by letting the semigroup generated byL act on the noise.

2.1 Basic properties

Let us denote by (Ω,F ,P) the underlying probability space for the cylindrical Wiener process
dW , and byE the expectation inΩ. We define the stochastic convolution

WL(t, ω) =
∫ t

0
eL(t−s)QdW (s, ω) , ω ∈ Ω . (2.1)

The argumentω will be suppressed during the major part of the discussion. For a discussion
on the definition of the stochastic integral in infinite-dimensional Banach spaces, we refer to
[DPZ92b]. Notice that sincêϕ1 has compact support, we can find aC∞0 function ψ̂ such that
ψ̂(x) = 1 for x ∈ suppϕ̂. We defineQ̃f = ψ ? f and fix a constantR such that

suppϕ̂ ⊂ suppψ̂ ⊂ {x ∈ R | |x| ≤ R} . (2.2)

We have of coursẽQQ = Q. An important consequence of this property is

Lemma 2.1 Fix η > 0 andα < 1/2. Then there exists a version ofWL with α-Hölder contin-
uous sample paths inAη. Furthermore, for everyT > 0, the mapping

W η
L : Ω → Cb([0, T ],Aη) ,

ω 7→ WL(·, ω) ,
(2.3)

is measurable with respect to the Borelσ-field generated by the strong topology on the space
Cb([0, T ],Aη).
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Remark 2.2 The meaning of the word “version” is that the process constructed here differs
from (2.1) only on a set ofP-measure0. We will in the sequel not make any distinction between
both processes.

Proof of Lemma 2.1.We first notice thatWL(t) has anα-Hölder continuous version in L2(R).
This is a consequence of the fact that the Hilbert-Schmidt norm in L2(R) of exp(Lt)Q is bounded
by e−t‖ϕ1‖2‖ϕ2‖2. Since L2(R) is separable, the mapping

WL : Ω → Cb([0, T ],L2(R)) ,

ω 7→ WL(·, ω) ,

is measurable [DPZ92b, Prop 3.17]. SinceL andQ̃ commute, we can write

WL(t, ω) =
∫ t

0
Q̃2eL(t−s)QdW (s, ω) = Q̃2WL(t, ω) , (2.4)

where we used [DPZ96, Prop. 4.15] to commute the operator and the integral. We will show that
Q̃2 defines a bounded continuous linear operator from L2(R) into Aη. The claim then follows
if we define the mapW η

L = Q̃2
η ◦WL, where we denote bỹQ2

η the operator constructed in an
obvious way fromQ̃2 as a map fromCb([0, T ],L2(R)) intoCb([0, T ],Aη).

Notice first that iff ∈ L2(R), we have by the Young inequalitỹQf ∈ L∞(R) and the
estimate

‖Q̃f‖∞ ≤ ‖ψ‖2‖f‖2 (2.5)

holds. Take nowf ∈ L∞(R). SinceQ̃ maps any measurable function onto an entire analytic
function,Q̃f (z) has a meaning for everyz ∈ C. We have for anyx ∈ R

|(Q̃f)(x+ iη)| =
∣∣∣∫

R
ψ(x+ iη − y)f (y) dy

∣∣∣ . (2.6)

By assumption, the Fourier transform ofψ belongs toC∞0 . We know that such functions enjoy
the property – seee.g.[RS80] – that for eachN > 0 there exists a constantCN such that

|ψ(x+ iη)| ≤ CNe
R|η|

(1 + x2 + η2)N
,

where the constantR is defined in (2.2). We thus have the estimate

|(Q̃f)(x+ iη)| ≤ ‖f‖∞
∫

R
|ψ(x+ iη − y)| dy

≤ CeR|η|‖f‖∞ ,
(2.7)

and thus
|||Q̃f |||η,∞ ≤ CeR|η|‖f‖∞ . (2.8)

Collecting (2.5) and (2.8) proves the claim.
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Remark 2.3 As an evident corollary of the proof of the lemma, note thatWL(t) ∈ D(L) for all
timest ≥ 0 and that the mapping

WL : Ω → Cb([0, T ],D(L)) ,

ω 7→ WL(·, ω) ,
(2.9)

has the same properties as the mappingW η
L if we equipD(L) with the graph norm. In particular,

WL has almost surelyα-Hölder continuous sample paths inD(L).

We will now give more precise bounds on the magnitude of the processWL. Our main tool
will be the so-called “factorization formula” which will allow to get uniform bounds over some
finite time interval.

2.2 Factorization of the stochastic convolution

We define, forδ ∈ (0, 1/2),

YL,δ(t) =
∫ t

0
(t− s)−δeL(t−s)QdW (s) ,

(GδΨ)(t) =
∫ t

0
(t− s)δ−1eL(t−s)Ψ(s) ds .

Notice that we can show by the same arguments as in Lemma 2.1 that the processYL,δ(t) has a
version which takes values inAη. Thus, in particular the expressionYL,δ(t, x) is a well-defined
complex-valued random variable. A corollary of the stochastic Fubini theorem (sometimes
referred to as the “factorization formula” [DPZ92b]) shows that

WL(t) =
sinπδ
π

(GδYL,δ)(t) . (2.10)

Before we start to estimate‖WL(t)‖∞, we state without proof the following trivial consequence
of the Young inequality:

Lemma 2.4 Denote bygt the heat kernel and choosep > 1. Then there exists a constantc
depending onp such that

‖gt ? f‖∞ ≤ ct−1/(2p)‖f‖p , (2.11)

holds for everyf ∈ Lp(R).

We have, using (2.10), Lemma 2.4, and the Hölder inequality,

‖WL(t)‖∞ ≤ C
∫ t

0
(t− s)δ−1e−(t−s)‖gt−s ? YL,δ(s)‖∞ ds

≤ C
∫ t

0
(t− s)δ−1−1/(2p)‖YL,δ(s)‖p ds

≤ C
(∫ t

0
(t− s)q(δ−1−1/(2p)) ds

)1/q(∫ t

0
‖YL,δ(s)‖p

p ds
)1/p

,

whereq is chosen such thatp−1 + q−1 = 1. It is easy to check that the first integral converges
when

p >
3

2δ
. (2.12)
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In that case, we have

‖WL(t)‖p
∞ ≤ Ctγ

∫ t

0
‖YL,δ(s)‖p

p ds , γ = pδ − 3

2
. (2.13)

So it remains to estimate‖YL,δ(t)‖p.

2.3 Estimate on the processYL,δ(t)

This subsection is devoted to the proof of the following lemma.

Lemma 2.5 LetYL,δ be as above and choosep ≥ 2 andδ ∈ (0, 1/2). There exists a constantc
depending onδ, p, ϕ1 andϕ2 but independent oft such thatE‖YL,δ(t)‖p

p ≤ c.

Remember that the convolution of two decaying functions decays like the one that decays slower
at infinity:

Lemma 2.6 Let f and g be two positive even functions which are integrable and monotone
decreasing between0 and∞. Then the estimate

|(f ? g)(x)| ≤ |f (x/2)| ‖g‖1 + |g(x/2)| ‖f‖1

holds.

Proof. Assumex ≥ 0 (the casex < 0 can be treated in a similar way) and defineIx =
(x/2, 3x/2). We can decompose the convolution as

|(f ? g)(x)| ≤
∫

Ix

|f (y − x)g(y)| dy +
∫

R\Ix

|f (y − x)g(y)| dy

≤ |g(x/2)|
∫

R
|f (y)| dy + |f (x/2)|

∫
R
|g(y)| dy ,

which proves the assertion.

Proof of Lemma 2.5.We use the formal expansion

dW (x, t) =
∞∑

j=1

ej(x) dwj(t) ,

where theei form an orthonormal basis of L2(R, dx) (say the eigenfunctions of the harmonic
oscillator) and thedwi are independent Wiener increments. We also denote byTx the translation
operator (Txf )(y) = f (y − x). We then have

E|YL,δ(t, x)|2 = E
∣∣∣∣∫ t

0

∞∑
j=1

(t− s)−δe−(t−s)(gt−s ? ϕ1 ? (ϕ2 ej))(x) dwj(s)
∣∣∣∣2

=
∫ t

0

∞∑
j=1

(t− s)−2δe−2(t−s)|(gt−s ? ϕ1 ? (ϕ2 ej))(x)|2 ds

=
∫ t

0
(t− s)−2δe−2(t−s)

∞∑
j=1

|〈ϕ2 Tx(gt−s ? ϕ1), ej〉|2 ds
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=
∫ t

0
s−2δe−2s‖ϕ2 Tx(gs ? ϕ1)‖2

2 ds .

An explicit computation shows the equality

‖ϕ2 Tx(gs ? ϕ1)‖2
2 = (ϕ2

2 ? (gs ? ϕ1)
2)(x) .

Using Lemma 2.6, the fact thatϕ1(x) ≤ CN〈〈x〉〉−N for everyN , and the well-known inequality
|gs ? ϕ1|(x) ≤ ‖ϕ1‖∞, we get the estimate

(gs ? ϕ1)
2(x) ≤ C

(e−x2/(16s)

〈〈s〉〉
+

1

〈〈x〉〉N
)
.

Using again Lemma 2.6 and (1.1), we get

‖ϕ2 Tx(gs ? ϕ1)‖2
2 ≤ C

(e−x2/(64s)

〈〈s〉〉
+

1

〈〈x〉〉1+2β

)
.

It is now an easy exercise to show that

sup
s>0

‖ϕ2 Tx(gs ? ϕ1)‖2
2 ≤ C

( 1

〈〈x〉〉2
+

1

〈〈x〉〉1+2β

)
.

Definingβ′ = min{1/2, β}, and using〈〈x〉〉 ≥ 1, we have

E|YL,δ(t, x)|2 ≤ C〈〈x〉〉−1−2β′
∫ t

0
s−2δe−2s ds ≤ C〈〈x〉〉−1−2β′ .

SinceYL,δ(t, x) is a Gaussian random variable, this implies, forp ≥ 2

E‖YL,δ(t)‖p
p =

∫
R

E|YL,δ(t, x)|p dx ≤ C
∫

R
(E|YL,δ(t, x)|2)p/2 dx

≤ C
∫

R

1

〈〈x〉〉p/2+β′p
dx ≤ C .

(2.14)

This proves the assertion.

As a corollary of Lemma 2.5, we have the following estimate on the processWL(t).

Corollary 2.7 For any p ≥ 2, there is a constantC > 0 such thatE‖WL(t)‖p
∞ ≤ C for all

timest ≥ 0.

Proof. Using again the equalityWL(t) = Q̃WL(t), we notice that it is enough to have an esti-
mate onE‖WL(t)‖p

p. This can be done by retracing the proof of Lemma 2.5 withδ replaced by
0.

We have now collected all the necessary tools to obtain the main result of this section.
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Theorem 2.8 For everyε > 0, there are constantsC,R > 0 depending only on the choices of
ϕ1, ϕ2 andε such that the estimate

E|||WL|||T ≤ CeR
√

TT 1/2−ε

holds.

Proof. The estimate
|||WL|||T ≤ CeR

√
T sup

t∈(0,T ]
‖WL(t)‖∞ , (2.15)

holds as a consequence of Eqs. (2.6) and (2.8). We thus need an estimate on‖WL(t)‖∞ which
is uniform on some time interval. This is achieved by combining Lemma 2.5 with Eq. (2.13).
Let us first choose a constantδ > 1/2, but very close to1/2 and then a (big) constantp such
thatp > max{2, 3/(2δ)}. Since supt∈(0,T ] ‖WL(t)‖∞ is a positive random variable, we have

E
(

sup
t∈(0,T ]

‖WL(t)‖∞
)
≤ C

(
E(supt∈(0,T ]‖WL(t)‖∞)p

)1/p

= C
(
E(supt∈(0,T ]‖WL(t)‖p

∞)
)1/p

≤ C
(
T γ

∫ T

0
E‖YL,δ(s)‖p

p ds
)1/p

≤ CT (γ+1)/p ≤ CT δ−1/(2p) . (2.16)

The exponentδ−1/(2p) can be brought arbitrarily close to1/2. This, together with the previous
estimate (2.15), proves the claim.

We have now the necessary tools to prove the existence of a unique solution to the SPDE (1.2).

3 Existence of the Solutions

Throughout this section, we denote byB the Banach spaceCu(R) of bounded uniformly con-
tinuous complex-valued functions on the real line endowed with the norm‖ · ‖∞. The reason
why we can not use a standard existence theorem is thatB is not separable. Nevertheless, the
outline of our proof is quite similar to the proofs one can find in [DPZ92b]. The technique is to
solve (1.2) pathwise and then to show that the result yields a well-defined stochastic process on
B which is a mild solution to the considered problem. In order to prepare the existence proof
for solutions of (1.2), we study the dynamics of thedeterministicequation

Ẋξ(W, t) = LXξ(W, t) + F (Xξ(W, t) +W (t)) , Xξ(W, 0) = ξ. (3.1)

In this equation,ξ ∈ L∞(R) is an arbitrary initial condition andW ∈ Cb([0, T ],Aη) is an
arbitrary noise function withW (0) = 0 and η > 0 fixed. For the moment, we choose an
arbitrary timeT > 0 and study the solutions up to timeT . The reason why we study (3.1) is
that ifXξ is a solution of (3.1), thenYξ(t) = Xξ(t) +W (t) is a solution of

Ẏξ(t) = LYξ(t) + F (Yξ(t)) + Ẇ (t) , Yξ(0) = ξ,
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providedW : [0, T ] → Aη is a differentiable function. Because of the dissipativity ofF , we
will show that (3.1) possesses a unique bounded and continuous solution inB for all times
t ∈ (0, T ]. Consider the map

ST
ξ : Cb([0, T ],Aη) → Cb((0, T ],B) ,

W (·) 7→ Xξ(W, ·) ,

that associates to every noise functionW and every initial conditionξ ∈ L∞(R) the solution
of (3.1). (We do not show explicitly the value ofη in the notations, since the mapST

ξ is in an
obvious sense independent ofη.) We have the following result.

Lemma 3.1 The map(ξ,W ) 7→ ST
ξ (W ) is locally Lipschitz continuous in both arguments.

Furthermore, the estimates

‖ST
ξ (W )‖ ≤ max{‖ξ‖∞, C(1 + ‖W‖3)} , (3.2a)

‖ST
ξ (W )− ST

ζ (W )‖ ≤ eT‖ξ − ζ‖∞ , (3.2b)

hold.

Proof. The proof relies on the results of Appendix A. As a first step, we verify that the assump-
tions of Theorem A.2 are satisfied withFt(x) = F (x + W (t)). It is well-known [Lun95] that
A1 is satisfied for the Laplacean and thus forL. Using the easy-to-check inequality

|(a− b) + α(a|a|2 − b|b|2)| ≥ |a− b|
(
1 + α

|a|2 + |b|2

2

)
,

which holds for anya, b ∈ C andα ≥ 0, it is also straightforward to check that the mapping
L + Ft is κ-quasi dissipative for all times withκ = 1 and thereforeA2 holds. AssumptionA3
can be checked in a similar way. To checkA4, notice that by Cauchy’s integral representation
theorem,Aη ⊂ D(L), and soFt mapsD(L) into itself. Furthermore, it is easy to check the
inequality

‖∂xv‖2
∞ ≤ C‖v‖∞‖∂2

xv‖∞ , v ∈ D(L) . (3.3)

We leave it to the reader to verify, with the help of (3.3), thatA4 is indeed satisfied. It is clear
by the continuity ofW (·) thatA5 holds as well, so we are allowed to use Theorem A.2.

We will show that (3.2) holds for arbitrary initial conditions inD(L). To show that they also
hold for arbitrary initial conditions in L∞(R), we can apply arguments similar to what is done
at the end of the proof of Theorem A.2.

Until the end of the proof, we will always omit the subscript∞ in the norms. Denote by
X(t) the solution of (3.1). SinceX(t) is strongly differentiable by Theorem A.2, the left lower
Dini derivativeD−‖X(t)‖ satisfies by (A.2)

D−‖X(t)‖ ≤ lim inf
h→0+

h−1(‖X(t)‖ − ‖X(t)− hLX(t)− hFt(X(t))‖)

≤ −‖X(t)‖+ C(1 + ‖W (t)‖3) ,
(3.4)

where the last inequality is easily obtained by inspection, absorbing the linear instability into
the strongly dissipative term−X(t)|X(t) + W (t)|2. The estimate (3.2a) follows immediately
from a standard theorem about differential inequalities [Wal64].
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Inequality (3.2b) is an immediate consequence of Theorem A.2.
It remains to show thatST

ξ (W ) is a locally Lipschitz continuous function ofW . We call
X(t) andX̃(t) the solutions of (3.1) with noise functionsW andV respectively. We also denote
by FW

t andF V
t the corresponding nonlinearities. In a similar way as above, we obtain the

inequality

D−‖X(t)− X̃(t)‖ ≤ ‖X(t)− X̃(t)‖+
‖(FW

t − F V
t )(X(t))‖
2

+
‖(FW

t − F V
t )(X̃(t))‖
2

.

The claim now follows from the estimate

‖(FW
t − F V

t )(x)‖ ≤ C‖W − V ‖(1 + ‖x‖2 + ‖W‖2 + ‖V ‖2) ,

and from thea priori estimate (3.2a) on the norms ofX(t) andX̃(t).

Before we state the existence theorem, let us define the following.

Definition 3.2 A transition semigroupPt on a Banach spaceB has theweak Fellerproperty if
Ptϕ ∈ Cu(B) for everyϕ ∈ Cu(B).

Theorem 3.3 For every initial condition inL∞(R), the SPDE defined by (SGL) possesses a
unique continuous mild solution inB for all times. The solution is Markov, its transition
semigroup is well-defined and weak Feller and its sample paths are almost surelyα-Hölder
continuous for everyα < 1/2.

Proof. The main work for the proof was done in Lemma 3.1. Recall the definition (2.3) of the
mappingW η

L that associates to every element ofΩ a continuous noise function inAη. SinceAη

is continuously embedded inB, we candefinethe random variable

uT
ξ : Ω → Cb((0, T ],B) ,

ω 7→ (ST
ξ ◦W

η
L)(ω) +W η

L(ω) ,

for someη > 0 and someT > 0. This allows to define the stochastic process

uξ(t) : Ω → B ,

ω 7→ (uT
ξ (ω))(t) ,

for someT > t. It is clear by the uniqueness of the solutions to the deterministic equation (3.1)
that this expression is well-defined,i.e.does not depend on the particular choice ofT . It is also
independent of the choice ofη. SinceW η

L is measurable andST
ξ is continuous,uξ is a well-

defined stochastic process with values inB. It is immediate from the definitions ofW η
L andST

ξ

thatuξ is indeed a mild solution to (SGL). The Markov property follows from the construction
and the Markov property ofWL.
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To show that the transition semigroup is well-defined, it suffices by Fubini’s theorem to
show that the function

Pξ,t(Γ) = P(uξ(t) ∈ Γ) =
∫
Ω
χΓ(uξ(t, ω)) P(dω) ,

is measurable as a function ofξ for everyB-Borel setΓ and everyt ≥ 0. This is (again by Fu-
bini’s theorem) an immediate consequence of the measurability ofWL and the joint continuity
of Sη

ξ (W ).
The weak Feller property is an immediate consequence of (3.2b), since

|(Ptϕ)(ξ)− (Ptϕ)(ζ)| ≤
∫
Ω
|ϕ(uξ(t, ω))− ϕ(uζ(t, ω))|P(dω) .

Now chooseε > 0. Sinceϕ ∈ Cu(B), there existsδ > 0 such that|ϕ(x) − ϕ(y)| < ε for
‖x − y‖ < δ. It suffices to chooseξ close enough toζ such that‖uξ(t, ω) − uζ(t, ω)‖ ≤
et‖ξ − ζ‖ < δ holds.

Theα-Hölder continuity of the sample paths is a consequence of the strong differentiability
(and thus local Lipschitz continuity) of the solutions of (3.1) and of the almost sureα-Hölder
continuity of the sample paths ofWL.

We now show that the solution of (1.2) not only exists inCb(R) but also stays bounded in
probability. In fact we have

Lemma 3.4 Let uξ(t) be the solution of (1.2) constructed above withξ ∈ L∞(R). There exist
a timeT ∗ > 0 depending onξ and a constantC > 0 such thatE‖u(t)‖∞ ≤ C for every time
t > T ∗.

Proof. From (3.4), we obtain the estimate

‖u(t)−WL(t)‖∞ ≤ e−t‖ξ‖∞ + C
∫ t

0
e−(t−s)(1 + ‖WL(s)‖∞)3 ds .

This yields immediately

sup
t>T

E‖u(t)‖∞ ≤ e−T‖ξ‖∞ + C sup
s>0

E(1 + ‖WL(s)‖∞ + ‖WL(s)‖3
∞) .

The claim follows now easily from Corollary 2.7.

4 Analyticity of the Solutions

Our first step towards the existence proof for an invariant measure consists in proving that the
solution of (SGL) constructed in Section 3 lies for all times in some suitable space of analytic
functions. More precisely, we show that there is a (small) timeT such that the solution of
(SGL) up to timeT belongs toBT . (Recall the definition ofBT given in Subsection 1.1.) The
proof is inspired by that of [Col94] for the deterministic case, making use of the estimates of
the preceding sections, in particular of Theorem 2.8.
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We split the evolution into a linear part and the remaining nonlinearity. Recall the definitions

L = ∆− 1 and F (u)(x) = u(x)(2− |u(x)|2) .

Throughout this section, we assume thatu(t) is a stochastic process solving (SGL) in the mild
sense,i.e. there exists aξ ∈ L∞(R) such thatu(t) satisfies (1.3). Such a process exists and is
unique (givenξ) by Theorem 3.3.

For given functionsg ∈ L∞(R) andh ∈ BT , we define the mapMg,h : BT → BT as

(Mg,h(f ))(t) = h(t) + eLtg +
∫ t

0
eLτF (f (t− τ )) dτ

≡ h(t) + (Lg)(t) + (N f )(t) .
(4.1)

Until the end of this proof, we write||| · ||| instead of||| · |||T . It is possible to show – see [Col94]
– thatMg,h is always well-defined onBT and that there are constantsk1, k2, k3 such that

|||Lg||| ≤ k1‖g‖∞ ,

|||N f ||| ≤ k2T |||f |||3 ,

|||Mg,hf1 −Mg,hf2||| ≤ k3T (1 + |||f1|||+ |||f2|||)2|||f1 − f2||| .

We now show thatu(t) ∈ Aη with high probability for someη > 0. The precise statement of
the result is

Theorem 4.1 For anyε > 0 there are constantsη, T̃ , C > 0 such thatP(u(t) ∈ B(Aη, C)) >
1− ε for every timet > T̃ .

Proof. We fix T̃ bigger than the valueT ∗ we found in Lemma 3.4, saỹT = T ∗ + 1. We also fix
some timeT < 1 to be chosen later and we choose an arbitrary timet > T̃ . We show that with
high probability, the solutionu(t− T + ·) belongs toBT . To begin, we takeg = u(t− T ) and,
for s > 0, we define

h(s) =
∫ t−T+s

t−T
eL(t−T+s−σ)QdW (σ) .

Since the Wiener increments are identically distributed independent random variables, it is clear
thatL (h(s)) = L (WL(s)). In particular, Theorem 2.8 ensures the existence of a constantC1

such thatE|||h||| ≤ C1. By Lemma 3.4, there exists another constantC2 such thatE‖g‖∞ < C2.
Since the solution is Markovian,g andh are independent random variables and we have

P
(
‖g‖∞ <

2C2

ε
and |||h||| < 2C1

ε

)
= P

(
‖g‖∞ <

2C2

ε

)
P
(
|||h||| < 2C1

ε

)
> (1− ε/2)2 > 1− ε .

From now on we assume that the above event is satisfied. Thus there is a constantC3 ≈ O(1/ε)
such that

|||Mg,hf ||| ≤ C3 + k2T |||f |||3 .
If we impose nowT < 1/(8k2C

2
3 ), we see thatMg,h maps the ball of radius2C3 centered at0

into itself. If we also impose the condition

T <
1

k3(1 + 4C3)2
,
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we see thatMg,h is a contraction on that ball. This, together with the uniqueness of the so-
lutions of (SGL), proves the claim. It moreover shows that the widthη of analyticity behaves
asymptotically likeη ≈ O(ε).

The above theorem tells us the probability for the solution to be analytic in a strip at a fixed
time. Another property of interest is the behavior of the individual sample paths. We will show
that any given sample path is always analytic with probability1. Recall thatF denotes the
σ-field of the probability space underlying the cylindrical Wiener process.

Proposition 4.2 There is an eventΓ ∈ F with P(Γ) = 1 such that for everyξ ∈ L∞(R), every
ω ∈ Γ, and every positive timet > 0, there exists a strictly positive valueη(t) > 0 such that
uξ(t, ω) ∈ Aη.

Proof. Define for each integern the setΓn as

Γn = {w ∈ Ω |WL(·, ω) ∈ C([0, n],An)} .

We haveP(Γn) = 1 for all n by Lemma 2.1. Byσ-completeness,Γ =
⋂

n>0 Γn belongs toF
andP(Γ) = 1. We claim thatΓ is the right event.

By the construction ofΓ, the sample pathsuξ(·, ω) andWL(·, ω) are continuous and thus
bounded on every finite time interval. Furthermore,WL(t, ω) ∈ Aη for every time and every
positiveη. The claim now follows easily from the proof of Theorem 4.1.

5 Existence of an Invariant Measure

We can now turn to the proof of Theorem 1.1. We first define the set of weight functionsW as
the set of all functions% : R → R which satisfy

a. The function%(x) is bounded, two times continuously differentiable and strictly positive.

b. For everyε > 0 there existsxε > 0 such that|%(x)| ≤ ε if |x| ≥ xε.

c. There exist constantsc1 andc2 such that

∣∣∣∂x%(x)
%(x)

∣∣∣ ≤ c1 and
∣∣∣∂2

x%(x)
%(x)

∣∣∣ ≤ c2 , (5.1)

for all x ∈ R.

Remark 5.1 The meaning of the expression “slowly decaying” used in Theorem 1.1 becomes
clear from the following statement, the verification of which we leave to the reader. Forevery
strictly positive decreasing sequence{xn}∞n=0 satisfying limn→∞ xn = 0 and such thatxn/xn+1

remains bounded, it is possible to construct a function% ∈ W such that%(n) = x|n| for every
n ∈ Z. In particular,xn may decay as slowly as1/ log(log(. . . log(C + n) . . .)), but is not
allowed to decay faster than exponentially.

For every% ∈ W , we define the weighted norm

‖f‖% = ‖%f‖∞ .
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We can now consider the topological vector spaceB% which is equal as a set toB = Cu(R),
but endowed with the (slightly weaker) topology induced by the norm‖ · ‖%. The spaceB% is a
metric space, but it is neither complete nor separable. Since the topology ofB% is weaker than
that of the original spaceB, everyB%-Borel set is also aB-Borel set and every probability
measure onB can be restricted to a probability measure onB%. Let us show that we can
define consistently a transition semigroupP∗

t,% acting on and into the set ofB%-Borel probability
measures. We have

Proposition 5.2 For every% ∈ W , the transition semigroupP∗
t associated to (SGL) can be

extended to a transition semigroupP∗
t,% such that (1.5) holds for everyB%-Borel setΓ. Further-

more, the transition semigroupP∗
t,% is weak Feller.

In order to prove this proposition, we will show the Lipschitz continuous dependence of the
solutions on the initial conditions in the new topology. For this, we need (see Appendix A for
the definition of a dissipative mapping in a Banach space):

Lemma 5.3 The operator∆ is quasi dissipative with respect to the norm‖ · ‖%.

Proof. We have the equality

%∆u = ∆(%u)− ∆%

%
(%u) + 2

∇%
%
∇(%u)− 2

∣∣∣∇%
%

∣∣∣2(%u) .

The claim follows from (5.1) and the fact that∆ and∇ are dissipative operators with respect to
‖ · ‖∞.

Proof of Proposition 5.2.Using Lemma 5.3, it is easy to check that the operatorL + Ft is, for
all times and for aκ ∈ R, κ-quasi dissipative with respect to the norm‖ · ‖%. This yields as in
Lemma 3.1 the estimate

‖ST
ξ (W )− ST

η (W )‖% ≤ eκT‖ξ − η‖% .

Using this estimate, we can retrace the arguments exposed in the proof of Theorem 3.3 to show
thatP∗

t,% is well-defined and weak Feller.

This construction is reminiscent of what was done in [MS95a, FLS96] to construct an attractor
for the deterministic case. They also introduce a weighted topology on L∞(R) to overcome the
fact that the attractor of the deterministic Ginzburg-Landau equation is not compact. Our result
is the following.

Theorem 5.4 For every% ∈ W , there exists aB%-Borel probability measureµ% which is in-
variant for the transition semigroupP∗

%,t.

The proof follows from a standard tightness argument. The main point is to notice that the
unit ball ofAη is compact inB% for any weight function% ∈ W . We formulate this as a lemma.

Lemma 5.5 The unit ball ofAη is a compact subset ofB% for every% ∈ W .
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Proof. SinceB% is a metric space, compact sets coincide with sequentially compact sets, see
[Köt83]. We use the latter characterization. Choose a sequenceF = {fn}∞n=1 of functions in
Aη with |||fn|||η,∞ ≤ 1 for all n. It is a standard theorem of complex analysis [Die68] that if
D ⊂ C is open andF is a family of analytic functions uniformly bounded onD, then for every
compact domainK ⊂ D there is a subsequence ofF that converges uniformly onK to an
analytic limit.

We define the subsequencesFn inductively by the following construction. First we choose
F−1 = F . Then we consider the compact setsDn = [−n, n] and we defineFn as a subsequence
of Fn−1 that converges uniformly onDn. Call f̂n the resulting limit function onDn. We now
define a global limit function̂f∞ by f̂∞(x) = f̂n(x) if x ∈ Dn. This procedure is well-defined
since differentf̂n must by construction coincide on the intersection of their domains.

It remains now to exhibit a subsequence ofF that converges tôf∞ in the topology ofB%.
For everyn ≥ 1, choosegn ∈ Fn such that|gn(z) − fn(z)| < 1/n for z ∈ Dn. Thegn form a
subsequence ofF . We have moreover

‖gn − f̂∞‖% ≤ ‖gn − f̂N‖% + ‖f̂N − f̂∞‖% ≤
‖%‖∞
N

+ 4 sup
|x|≥N

|%(x)| .

By hypothesesa. andb. on%, this expression tends to0 asN tends to∞.

Remark 5.6 By the compatibility of the various topologies with the linear structures, every
bounded closed subset ofAη is compact as a subset ofB%.

Proof of Theorem 5.4.We choose an initial conditionξ ∈ L∞(R) and consider the family of
B%-Borel probability measures given by

µt =
1

t

∫ t

0
P∗

%,t(δξ) dt .

Fix now an arbitraryε > 0. By Theorem 4.1 there existη, C, T > 0 such thatµt(B(Aη, C)) >
1− ε for everyt > T . SinceB(Aη, C) is compact inB% by Lemma 5.5, the family{µt}t>T is
tight and thus contains a weakly convergent subsequence by Prohorov’s theorem. Denote byµ%

the limit measure. Remember that a Borel probability measure on a metric spaceM is uniquely
determined by its values onCu(M ) [Bil68]. The weak Feller property ofP∗

t,% is thus sufficient
to retrace the proof of the Krylov-Bogoluboff existence theorem [BK37, DPZ96], which states
thatµ% is invariant forP∗

%,t.

A Dissipative Maps

This appendix will first give a short caracterization of dissipative maps in Banach spaces. We
will then prove a global existence theorem for the solutions of non-autonomous semilinear
PDE’s with a dissipative nonlinearity.

Definition A.1 Given a Banach spaceB and a mapF : D(F ) ⊂ B → B, one says [DPZ92b]
thatF is dissipativeif

‖x− y‖ ≤ ‖x− y − α(F (x)− F (y))‖ , (A.1)

holds for everyx, y ∈ D(F ) and everyα > 0. If there exists aκ ∈ R such thatx 7→ F (x)− κx
is dissipative, we say thatF is κ-quasi dissipative (or quasi dissipative for short).
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In the following,u : (0,∞) → B denotes a differentiable map. The function‖u(·)‖ is of course
continuous and its left-handed lower Dini derivative satisfies the inequality

D−‖u(t)‖ = lim inf
h→0+

‖u(t)‖ − ‖u(t− h)‖
h

≤ lim inf
h→0+

(‖u(t)‖ − ‖u(t)− hu̇(t)‖
h

+
‖u(t− h)− u(t) + hu̇(t)‖

h

)
= lim inf

h→0+

‖u(t)‖ − ‖u(t)− hu̇(t)‖
h

. (A.2)

This estimate allows to get easily very useful estimates on the norm of the solutions of dissipa-
tive differential equations. For example, ifu̇(t) = F (u(t)) holds for all times andF is κ-quasi
dissipative, then the estimate

‖u(t)‖ ≤ eκt| ‖u(0)‖ − ‖F (0)‖ |+ ‖F (0)‖ (A.3)

holds as a consequence of a standard theorem about differential inequalities [Wal64].
We will now use standard techniques to prove a global existence theorem for the Cauchy

problem
Ẋξ(t) = LXξ(t) + Ft(Xξ(t)) , Xξ(0) = ξ , (A.4)

and the associated integral equation

Xξ(t) = eLtξ +
∫ t

0
eL(t−s)Fs(Xξ(s)) ds , (A.5)

in a Banach spaceB. We donot require that the domain ofL be dense inB. Let us denote by
D(L) the Banach space obtained by closing the domain ofL in B. Since, by assumptionA1
below,L is chosen to be closed, we can equipD(L) with the graph norm‖x‖L = ‖x‖ + ‖Lx‖
to obtain a Banach space. Our assumptions onL andFt will be the following.

A1. The operatorL is sectorial in the sense that its resolvent set contains the complement of
a sector in the complex plane and that its resolvent satisfies the usual bounds [Lun95,
Def 2.0.1].

This assumption implies [Lun95] thatL generates an analytic semigroupS(t) which is strongly
continuous onD(L) and mapsB intoD(Lk) for anyk ≥ 0. Furthermore, a bound of the form
‖S(t)‖ ≤ MeΩt holds. We will assume without loss of generality thatM ≤ 1 andΩ = 0.
The latter assumption can be made since a constant can always be added to the nonlinear part.
The former assumption is only made for convenience to simplify the notations. All the results
also hold forM > 1. Another useful property ofS(t) is that there exists a constantc such that
‖S(t)ξ‖L ≤ ct−1‖ξ‖ for ξ ∈ B andt > 0.

A2. There exist a positive timeT and a real constantκ such that the mappingx 7→ Lx+Ft(x)
is κ-quasi dissipative for all timest ∈ [0, T ].

This assumption will ensure the existence of the solutions up to the timeT , which may be
infinite.
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A3. The functionFt is everywhere defined and there exist continuous increasing functions
a, ã : R+ → R+ such that

‖Ft(x)‖ ≤ a(‖x‖) ,

‖Ft(x)− Ft(y)‖ ≤ ‖x− y‖ · ã(‖x‖+ ‖y‖) ,
(A.6)

holds for everyx, y ∈ B and for everyt ∈ [0, T ].

A4. The mapFt mapsD(L) intoD(L) for all times and there exist continuous at most poly-
nomially growing functionsb, b̃ : R+ → R+ such that

‖Ft(x)‖L ≤ b(‖x‖L) ,

‖Ft(x)− Ft(y)‖L ≤ ‖x− y‖L · b̃(‖x‖L + ‖y‖L) ,
(A.7)

holds for everyx, y ∈ D(L) and for everyt ∈ [0, T ].

A5. The mappingt 7→ Ft(x) is continuous as a mapping [0, T ] → B for everyx ∈ B, and as
a mapping [0, T ] → D(L) for everyx ∈ D(L).

These assumptions allow us to show the existence of the solutions of (A.4) in the mild sense for
any initial conditionξ ∈ B and in the strict sense forξ ∈ D(L). Furthermore, we show that
for any initial conditionξ ∈ B, the solution lies inD(L) after an infinitesimal amount of time.
Similar results can be found in the literature (seee.g.[Lun95, Hen81] and references therein),
but with slightly different assumptions. The present result has by no means the pretention to
generality but is tailored to fit our needs. Since the proof is not excessively long, we give it here
for the sake of completeness.

Theorem A.2 AssumeA1–A5 hold and chooseξ ∈ B. Then there exists a unique function
Xξ : [0, T ] → B solving (A.5) fort ∈ [0, T ]. The solutions satisfy‖Xξ(t)−Xη(t)‖ ≤ eκt‖ξ−η‖
for all times. Furthermore,t 7→ Xξ(t) is differentiable fort > 0, Xξ(t) ∈ D(L) and its
derivative satisfies (A.4).

Proof. Assume first that the initial conditionξ belongs toD(L). We denote byBL,T the Banach
spaceC([0, T ],D(L)) with the usual sup norm. We show the local existence of a classical
solution to (A.4) inBL,T by a standard contraction argument. ChooseT0 > 0 and define the
mapMξ : BL,T0 → BL,T0 by

(Mξf)(t) = S(t)ξ +
∫ t

0
S(t− s)Fs(f (s)) ds .

It is clear byA1, A3, A4 andA5 thatMξ is well-defined and that the bounds

‖Mξf‖ ≤ ‖ξ‖L + T0b(‖f‖) , (A.8a)

‖Mξf −Mξg‖ ≤ T0‖f − g‖ · b̃(‖f‖+ ‖g‖) , (A.8b)

‖Mξf −Mζf‖ ≤ ‖ξ − ζ‖L , (A.8c)
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hold. It is clearly enough to takeT0 small enough, for example

T0 < min
{ ‖ξ‖L

b(2‖ξ‖L)
,

1

b̃(4‖ξ‖L)

}
, (A.9)

to find a contraction in the ballB(BL,T0 , 2‖ξ‖L). ThusMξ possesses a unique fixed pointXξ

in BL,T0 . By [Lun95, Lem. 4.1.6],Xξ is strongly differentiable inB and its derivative satisfies
(A.4).

Using (A.2) andA2, we see immediately that for anyξ, ζ ∈ D(L) andt > 0 such that the
strong solutionsXζ andXξ exist up to timet, the estimates

‖Xξ(t)‖ ≤ |‖ξ‖ − a(0)|eκt + a(0) ,

‖Xζ(t)−Xξ(t)‖ ≤ eκt‖ζ − ξ‖ ,
(A.10)

hold. The global existence of the solution now follows by iterating the above arguments, using
(A.10) to ensure the non-explosion of the solutions. We leave it to the reader to verify that one
can indeed continue the solutions up to the timeT .

We next now show that for any initial conditionξ ∈ B, the solution of (A.5) exists locally
and lies inD(L) for positive times. We defineMξ as above, but replace the spaceBL,T0 by the
larger spaceB̄L,T0 given by the measurable functionsf : (0, T0] → D(L) with finite norm

|||f ||| = sup
t∈(0,T0]

‖tf (t)‖L + sup
t∈(0,T0]

‖f (t)‖ .

We first show thatMξ is well-defined onB̄L,T0. Choosef ∈ B̄L,T0 . It is easy to check that,
by A3, ‖(Mξf)(t)‖ ≤ ‖η‖+ T0a(|||f |||). By A4, we can choosen such thatb andb̃ grow slower
than (1 + x)n. We also choose an exponentN > n and chooseT0 < 1. We have, by the remark
following A1, the estimate

‖t(Mξf)(t)‖L ≤ ‖tS(t)ξ‖L +
∫ t−tN

0

∥∥∥tS(t− s)Fs(f (s))
∥∥∥

L
ds

+
∫ t

t−tN

∥∥∥tS(t− s)Fs(f (s))
∥∥∥

L
ds

≤ c‖ξ‖+
∫ t−tN

0

ct

t− s
a(‖f (s)‖) ds+

∫ t

t−tN
tb(‖f (s)‖L) ds

≤ c‖ξ‖+ C1t ln(t)a(|||f |||) + C2t
N+1

(
1 +

|||f |||
t

)n
.

A similar estimate holds for|||Mξf −Mξg|||. SinceN > n, there exists a functionχ such that
estimates of the type

|||Mξf ||| ≤
√
T0χ(|||f |||) and |||Mξf −Mξg||| ≤

√
T0|||f − g|||χ(|||f |||+ |||g|||)

hold. It follows thatT0 can be chosen sufficiently small to makeMξ a contraction on some ball
of B̄L,T0, and so the fixed point ofMξ takes its values inD(L).

In order to complete the proof of the theorem, it remains to show that (A.10) holds for
arbitrary intial conditions. We again consider the same mappingMξ, but this time on the space
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Cb((0, T0],B). It is straightforward to check, using the assumptions, that bounds similar to
(A.8), but with‖ · ‖L replaced by‖ · ‖ andb, b̃ replaced bya, ã hold. We notice that, by (A.8a),
we can, for arbitraryε > 0, chooseδ so small that‖uη(δ)‖ ≤ (1 + ε)‖η‖. Sinceu(δ) ∈ D(L),
this gives the estimate‖uη(t)‖ ≤ |(1 + ε)‖η‖− a(0)|eκ(t−δ) + a(0), holding for everyε > 0. By
using (A.8b) and a similar argument, we can show that‖uη(t)− uξ(t)‖ ≤ eκ(t−δ)(1 + ε)‖η− ξ‖
holds and thus (A.10) is true forη, ξ ∈ B.
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III. Uniqueness of the Invariant Measure for a
Stochastic PDE Driven by Degenerate Noise

Abstract

We consider the stochastic Ginzburg-Landau equation in a bounded domain. We assume the
stochastic forcing acts only on high spatial frequencies. The low-lying frequencies are then only
connected to this forcing through the non-linear (cubic) term of the Ginzburg-Landau equation.
Under these assumptions, we show that the stochastic PDE has auniqueinvariant measure. The
techniques of proof combine a controllability argument for the low-lying frequencies with an
infinite dimensional version of the Malliavin calculus to show positivity and regularity of the
invariant measure. This then implies the uniqueness of that measure.

1 Introduction

In this paper, we study a stochastic variant of the Ginzburg-Landau equation on a finite domain
with periodic boundary conditions. The deterministic equation is

u̇ = ∆u+ u− u3 , u(0) = u(0) ∈ H , (1.1)

whereH is the real Hilbert spaceW1
per([−π, π]), i.e., the closure of the space of smooth periodic

functionsu : [−π, π] → R equipped with the norm

‖u‖2 =
∫ π

−π
(|u(x)|2 + |u′(x)|2) dx .

(The restriction to the interval [−π, π] is irrelevant since other lengths of intervals can be ob-
tained by scaling space, time and amplitudeu in (1.1).) While we work exclusively with the real
Ginzburg-Landau equation (1.1) our methods generalize immediately to the complex Ginzburg-
Landau equation

u̇ = (1 + ia)∆u+ u− (1 + ib)|u|2u , a, b ∈ R , (1.2)

which has a more interesting dynamics than (1.1). But the notational details are slightly more
involved because of the complex values ofu and so we stick with (1.1).

While a lot is known about existence and regularity of solutions of (1.1) or (1.2), only
very little information has been obtained about the attractor of such systems, and in particular,
nothing seems to be known about invariant measures on the attractor.

On the other hand, when (1.1) is replaced by a stochastic differential equation, more can be
said about the invariant measure, see [DPZ96] and references therein. Since the problem (1.1)
involves only functions with periodic boundary conditions, it can be rewritten in terms of the
Fourier series foru:

u(x, t) =
∑
k∈Z

eikxuk(t) , uk =
1

2π

∫ π

−π
e−ikxu(x) dx .
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We callk the momenta,uk the modes, and, sinceu(x, t) is real we must always haveuk(t) =
ū−k(t), wherez̄ is the complex conjugate ofz. With these notations (1.1) takes the form

u̇k = (1− k2)uk −
∑

k1+k2+k3=k

uk1uk2uk3 ,

for all k ∈ Z and the initial condition satisfies{(1 + |k|)uk(0)} ∈ `2. In the sequel, we will
use the symbolH indifferently for the spaceW1

per([−π, π]) and for its counterpart in Fourier
space. In the earlier literature on uniqueness of the invariant measure for stochastic differential
equations, see the recent review [MS95a], the authors are mostly interested in systems where
each of theuk is forced by some external noise term. The main aim of our work is to study
forcing by noise whichacts only on the high-frequency partof u, namely on theuk with |k| ≥ k∗
for some finitek∗ ∈ N. The low-frequency amplitudesuk with |k| < k∗ are then onlyindirectly
forced through the noise, namely through the nonlinear coupling of the modes. In this respect,
our approach is reminiscent of the work done on thermally driven chains in [EPR99a, EPR99b,
EH00], where the chains were only stochastically driven at the ends.

In the context of our problem, theexistenceof an invariant measure is a classical result for
the noise we consider [DPZ96], and the main novelty of our paper is a proof ofuniquenessof
that measure. To prove uniqueness we begin by proving controllability of the equations,i.e., to
show that the high-frequency noise together with non-linear coupling effectively drives the low-
frequency modes. Using this, we then use Malliavin calculus in infinite dimensions, to show
regularity of the transition probabilities. This then implies uniqueness of the invariant measure.

We will study the system of equations

duk = −k2uk dt+ (uk − (u3)k) dt+
qk√

4π(1 + k2)
dwk(t) , (1.3)

with u ∈ H. The above equations hold fork ∈ Z, and it is always understood that

(u3)k =
∑

k1+k2+k3=k
k1,k2,k3∈Z

uk1uk2uk3 , (1.4)

with u−k = ūk. To avoid inessential notational problems we will work with even periodic
functions, so thatuk = u−k ∈ R. We will work with the basis

ek(x) =
1√

π(1 + k2)
cos(kx) . (1.5)

Note that this basis is orthonormal w.r.t. the scalar product inH, but theuk are actually given
by uk = (4π(1 + k2))−1/2〈u, ek〉. (We choose this to make the cubic term (1.4) look simple.)

The noise is supposed to act only on the high frequencies, but there we need it to be strong
enough in the following way. Letak = k2 + 1. Then we require that there exist constants
c1, c2 > 0 such that fork ≥ k∗,

c1a
−α
k ≤ qk ≤ c2a

−β
k , α ≥ 2 , α− 1/8 < β ≤ α . (1.6)

These conditions imply
∞∑

k=0

(1 + k4α−3/2)q2
k <∞ ,
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sup
k≥k∗

k−2αq−1
k <∞ .

We formulate the problem in a more general setting: LetF (u) be a polynomial of odd degree
with negative leading coefficient. LetA be the operator of multiplication by1 + k2 and letQ
be the operator of multiplication byqk. Then (1.3) is of the form

dΦt = −AΦt dt+ F (Φt) dt+QdW (t) , (1.7)

wheredW (t) =
∑∞

k=0 ekdwk(t) is the cylindrical Wiener process onH with thewk mutually
independent real Brownian motions.1 We defineΦt(ξ) as the solution of (1.7) with initial con-
dition Φ0(ξ) = ξ. Clearly, the conditions onQ can be formulated as

‖Aα−3/8Q‖HS <∞ , (1.8a)

q−1
k k−2α is bounded fork ≥ k∗ , (1.8b)

where‖ · ‖HS is the Hilbert-Schmidt norm onH. Note that for eachk, (1.3) is obtained by
multiplying (1.7) by (4π(1 + k2))−1/2〈·, ek〉.

Important Remark. The crucial aspect of our conditions is the possibility of choosingqk = 0
for all k < k∗, i.e., the noise drives only the high frequencies. But we also allow any of theqk
with k < k∗ to be different from 0, which corresponds to long wavelength forcing. Furthermore,
as we are allowingα to be arbitrarily large, this means that the forcing at high frequencies has
an amplitude which can decay like any power. The point of this paper is to show that these
conditions are sufficient to ensure the existence of a unique invariant measure for (1.7).

Theorem 1.1 The process (1.7) has a unique invariant Borel measure onH.

There are two main steps in the proof of Theorem 1.1. First, the nature of the nonlinearity
F implies that the modes withk ≥ k∗ couple in such a way to those withk < k∗ as to allow
controllability. Intuitively, this means that any point in phase space can be reached to arbitrary
precision in any given time, by a suitable choice of the high-frequency controls.

Second, verifying a Ḧormander-like condition, we show that a version of the Malliavin
calculus can be implemented in our infinite-dimensional context. This will be the hard part of
our study, and the main result of that part is a proof that the strong Feller property holds. This
means that for any measurable functionϕ ∈ Bb(H), the function

(P tϕ)(ξ) ≡ E
(
(ϕ ◦ Φt)(ξ)

)
(1.9)

is continuous.2 We show this by proving that a cutoff version of (1.7) (modifying the dynamics
at large amplitudes by a parameter%) makesP t

%ϕ adifferentiablemap.
The interest in such highly degenerate stochastic PDE’s is related to questions in hydrody-

namics where one would ask how “energy” is transferred from high to low frequency modes,

1It is convenient to have, in the case of (1.3),A = 1 −∆ andF (u) = 2u − u3 rather thanA = −1 −∆ and
F (u) = −u3.

2Throughout the paper,E denotes expectation andP denotes probability for the random variables.
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and vice versa when only some of the modes are driven. This could then shed some light on the
entropy-enstrophy problem in the (driven) Navier-Stokes equation.

To end this introduction, we will try to compare the results of our paper to current work
of others. These groups consider the2-D Navier Stokes equation without deterministic exter-
nal forces, also in bounded domains. In these equations, any initial condition eventually con-
verges to zero, as long as there is no stochastic forcing. First there is earlier work by Flandoli-
Maslowski [FM95] dealing with noise whose amplitude is bounded below by|k|−c. In the work
of Bricmont, Kupiainen and Lefevere [BKL00c, BKL00a], the stochastic forcing acts on modes
with low k, and they get uniqueness of the invariant measure and analyticity, with probability
1. Furthermore, they obtain exponential convergence to the stationary measure. In the work
of Kuksin and Shirikyan [KS00] the bounded noise is quite general, acts on low-lying Fourier
modes, and acts at definite times with ”noise-less” intervals in-between. Again, the invariant
measure is unique. It is supported byC∞ functions, is mixing and has a Gibbs property. In the
work of [EMS01], a result similar to [BKL00a] is shown.

The main difference between those results and the present paper is our control of a situation
which is already unstable at the deterministic level. Thus, in this sense, it comes closer to a
description of a deterministically turbulent fluid (e.g., obtained by an external force). On the
other hand, in our work, we need to actually force all high spatial frequencies. Perhaps, this
could be eliminated by a combination with ideas from the papers above.

2 Some Preliminaries on the Dynamics

Here, we summarize some facts about deterministic and stochastic GL equations from the liter-
ature which we need to get started.

We will consider the dynamics on the following space:

Definition 2.1 We defineH as the subspace of even functions inW1
per([−π, π]). The norm on

H will be denoted by‖ · ‖ , and the scalar product by〈·, ·〉 .

We consider first the deterministic equation

u̇ = ∆u+ u− u3 , u(0) = u(0) ∈ H , (2.1)

Due to its dissipative character the solutions are, for positive times, analytic in a strip around
the real axis. More precisely, denote by‖ · ‖Aη the norm

‖f‖Aη = sup
|Imz|≤η

|f (z)| ,

and byAη the corresponding Banach space of analytic functions. Then the following result
holds.

Lemma 2.2 For every initial valueu(0) ∈ H, there exist a timeT and a constantC such that
for 0 < t ≤ T , the solutionu(t, u(0)) of (2.1) belongs toA√

t
and satisfies‖u(t, u(0))‖A√t

≤ C.

Proof. The statement is proven in [Col94] for the case of the infinite line. Since the periodic
functions form an invariant subspace under the evolution, the result applies to our case.
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We next collect some useful results for the stochastic equation (1.7):

Proposition 2.3 For everyt > 0 and everyp ≥ 1 the solution of (1.7) with initial condition
Φ0(ξ) = ξ ∈ H exists inH up to timet. It defines by (1.9) a Markovian transition semigroup
onH. One has the bound

E
(

sup
s∈[0,t]

‖Φs(ξ)‖p
)
≤ Ct,p(1 + ‖ξ‖)p .

Furthermore, the process (1.7) has an invariant measure.

These results are well-known and in Section 8.6 we sketch where to find them in the literature.

3 Controllability

In this section we show the “approximate controllability” of (1.3). The control problem under
consideration is

u̇ = ∆u+ u− u3 +Qf (t) , u(0) = u(i) ∈ H , (3.1)

wheref is the control. Using Fourier series’ and the hypotheses onQ, we see that by choosing
fk ≡ 0 for |k| < k∗, (3.1) can be brought to the form

u̇k =


−k2uk + uk −

∑
`+m+n=k

u`umun +
qk√

4π(1 + k2)
fk(t) , |k| ≥ k∗ ,

−k2uk + uk −
∑

`+m+n=k

u`umun , |k| < k∗ ,
(3.2)

with {uk} ∈ H andt 7→ {fk(t)} ∈ L∞([0, τ ],H). We will refer in the sequel to{uk}|k|<k∗ as
the low-frequency modesand to{uk}|k|≥k∗ as thehigh-frequency modes. We also introduce the
projectorsΠL andΠH which project onto the low (resp. high) frequency modes. LetHL and
HH denote the ranges ofΠL andΠH respectively. ClearlyHL is finite dimensional, whereasHH

is a separable Hilbert space.
The main result of this section is approximate controllability in the following sense:

Theorem 3.1 For every timeτ > 0 the following is true: For everyu(i), u(f) ∈ H and everyε >
0, there exists a controlf ∈ L∞([0, τ ],H) such that the solutionu(t) of (3.1) withu(0) = u(i)

satisfies‖u(τ )− u(f)‖ ≤ ε.

Proof. The construction of the control proceeds in 4 different phases, of which the third is the
actual controlling of the low-frequency part by the high-frequency controls. In the construction,
we will encounter a timeτ (R, ε′) which depends on the normR of u(f) and some precisionε′.
Given this function, we split the given timeτ asτ =

∑4
i=1 τi, with τ4 ≤ τ (‖u(f)‖, ε/2) and all

τi > 0. We will use the cumulated timestj =
∑j

i=1 τi.

Step 1. In this step we choosef ≡ 0, and we defineu(1) = u(t1), wheret 7→ u(t) is the solution
of (3.1) with initial conditionu(0) = u(i). Since there is no control, we really have (2.1) and
hence, by Lemma 2.2, we see thatu(1) ∈ Aη for someη > 0.
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Step 2. We will construct a smooth controlf : [t1, t2] → H such thatu(2) = u(t2) satisfies:

ΠHu
(2) = 0 .

In other words, in this step, we drive the high-frequency part to0. To constructf , we choose
a C∞ function ϕ : [t1, t2] → R, interpolating between1 and 0 with vanishing derivatives
at the ends. DefineuH(t) = ϕ(t)ΠHu

(1) for t ∈ [t1, t2]. This will be the evolution of the high-
frequency part. We next define the low-frequency partuL = uL(t) as the solution of the ordinary
differential equation

u̇L = ∆uL + uL − ΠL((uL + uH)3) ,

with uL(t1) = ΠLu
(1). We then setu(t) = uL(t)⊕ uH(t) and substitute into (3.1) which we need

to solve for the controlQf (t) for t ∈ [t1, t2].
SinceuL(t)⊕ uH(t) as constructed above is inAη and sinceQf = u̇−∆u− u+ u3, and∆

mapsAη to Aη/2 we conclude thatQf ∈ Aη/2. By construction, the componentsqk of Q decay
polynomially withk and do not vanish fork ≥ k∗. Therefore,Q−1 is a bounded operator from
Aη/2 ∩HH toHH. Thus, we can solve forf in this step.

Step 3. As mentioned before, this step really exploits the coupling between high and low fre-
quencies. Here, we start fromu(2) at timet2 and we want to reachΠLu

(f) at timet3. In fact, we
will instead reach a pointu(3) with ‖ΠLu

(3) − ΠLu
(f)‖ < ε/2.

The idea is to choose for every low frequency|k| < k∗ a set of three3 high frequencies that
will be used to controluk. To simplify matters we will assume (without loss of generality) that
k∗ > 2:

Definition 3.2 We define for everyk with 0 ≤ k < k∗ the setIk by

Ik = {10k∗+k + k , 2 · 10k∗+k, 3 · 10k∗+k} .

We also defineI 0
L = {k : 0 ≤ k < k∗} and

I = I 0
L ∪

( ⋃
0≤k<k∗

Ik

)
.

Lemma 3.3 The sets defined above have the following properties:

(A) LetIk = {k1, k2, k3}. Then, of the six sums±k1± k2± k3 exactly one equalsk and one
equals−k. All others have modulus larger thank∗.

(B) The setsIk andI 0
L are all mutually disjoint.

(C) LetS be a collection of three indices inI , S = {k1, k2, k3}. If any of the sums±k1 ±
k2 ± k3 adds up tok with |k| < k∗ then eitherS = Ik or S ⊂ I 0

L or S is of the form
S = {k, k′, k′}.

Remark 3.4 At the end of this section, we indicate how this construction generalizes to the
complex Ginzburg-Landau equation.

3The number3 is the highest power of the nonlinearityF in the GL equation.



UNIQUENESS OF THEINVARIANT MEASURE 41

Proof. The claims (A) and (B) are obvious from the definition ofIk. To prove (C) letS =
{k1, k2, k3}. If S ⊂ I 0

L , we are done. Otherwise, at least one of theki is an element of an
I` for some` = 0, . . . , k∗ − 1. Clearly, if the two others are inI 0

L , none of the sums have
modulus less thank∗. If a secondkj is in I`′ with `′ 6= ` then again none of the 6 sums can
lead to a modulus less thank∗. Finally if kj is in I` then either all 3 are inI` and we are done,
or ki = kj and thusS = {k, k′, k′}. We have covered all cases and the proof of the lemma is
complete.

We are going to construct a control which, in addition to driving the low frequency part as
indicated, also impliesuk(t) ≡ 0 for k 6∈ I for t ∈ [t2, t3]. By the conditions onI , the
low-frequency part of (3.2) is for0 < k < k∗ equal to (having chosen the controls equal to 0
for k < k∗):

u̇k =
(
1− k2 − 6

∑
n∈I \I 0

L

|un|2
)
uk −

∑
±`±m±n=k

{`,m,n}⊂I0
L

u`umun − 6
∏

n∈Ik

un . (3.3)

Whenk = 0, the last term in (3.3) is replaced by−12
∏

n∈I0
un. This identity exploits the

relationsu−n = un. To simplify the combinatorial problem, we choose the controls of the 3
amplitudesun with n ∈ Ik in such a way that theseun are all equal to a fixed real function
zk(t) which we will determine below. With this particular choice, (3.3) reduces for0 < k < k∗
to

0 = −u̇k +
(
1− k2 − 18

∑
0≤n<k∗

|zn|2
)
uk − ((ΠLu)3)k − 6z3

k . (3.4)

For k = 0 the last term is−12z3
0 . We claim that for every pathγ ∈ C∞([t2, t3];HL) and every

ε > 0, we can find a set of bounded functionst 7→ zk(t) such that the solution of (3.4) shadows
γ at a distance at mostε.

To prove this statement, consider the mapF : Rk∗ → Rk∗ of the form (obtained when
substituting the pathγ into (3.4))

F :


z0

z1
...

zk∗−1

 7→


F0(z)
F1(z)

...
Fk∗−1(z)

 =


2z3

0

z3
1
...

z3
k∗−1

+


P0(z)
P1(z)

...
Pk∗−1(z)

 ,

where thePm are polynomials of degree at most2. We want to find a solution toF = 0.
TheFm form a Gr̈obner basis for the ideal of the ring of polynomials they generate. As an
immediate consequence, the equationF (z) = 0 possesses exactly3k∗ complex solutions, if
they are counted with multiplicities [MS95b]. Since the coefficients of thePm are real this
implies that there exists at least one real solution.

Having found a (possibly discontinuous) solution for thezk, we find nearby smooth func-
tions z̃k with the following properties:

– The equation (3.4) with̃zk replacingzk and initial conditionuk(t2) = u(2)
k leads to a

solutionu with ‖u(t3)− ΠLu
(f)‖ ≤ ε/2.

– One has̃zk(t3) = 0.
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Having found thẽzk we construct thefk in such a way that forn ∈ Ik one hasun(t) = z̃k(t).
Finally, for k /∈ I we choose the controls in such a way thatuk(t) ≡ 0 for t ∈ [t2, t3]. We
defineu(3) as the solution obtained in this way fort = t3.

Step 4. Starting fromu(3) we want to reachu(f). Note thatu(3) is in Aη (for everyη > 0)
since it has only a finite number of non-vanishing modes. By construction we also have
‖ΠLu

(3) − ΠLu
(f)‖ ≤ ε/2. We only need to adapt the high frequency part without moving

the low-frequency part too much.
SinceAη is dense inH, there is au(4) ∈ Aη with ‖u(4) − u(f)‖ ≤ ε/4. By the reasoning of

Step 2 there is for everyτ ′ > 0 a control for whichΠHu(t3 + τ ′) = ΠHu
(4) when starting from

u(t3) = u(3). Givenε there is aτ∗ such that ifτ ′ < τ∗ then‖ΠLu(t3 + τ ′)− ΠLu(t3)‖ < ε/4.
This τ∗ depends only on‖u(f)‖ and ε, as can be seen from the following argument: Since
ΠHu

(3) = 0, we can choose the controls in such a way that‖ΠHu(t3 + t)‖ is an increasing
function of t and is therefore bounded by‖ΠHu

(f)‖. The equation for the low-frequency part
is then a finite dimensional ODE in which all high-frequency contributions can be bounded in
terms ofR = ‖u(f)‖.

Combining the estimates we see that

‖u(t4)− u(f)‖ = ‖ΠL(u(t4)− u(f))‖ + ‖ΠH(u(t4)− u(f))‖
≤ ‖ΠL(u(t4)− u(t3))‖ + ‖ΠL(u(t3)− u(f))‖
+ ‖ΠH(u(4) − u(f))‖ ≤ ε .

The proof of Theorem 3.1 is complete.

3.1 The combinatorics for the complex Ginzburg-Landau equation

We sketch here those aspects of the combinatorics which change for the complex Ginzburg-
Landau equation. In this case, both the real and the imaginary parts ofun andu−n are indepen-
dent. Thus, we would need a noise which acts on each of the real and imaginary components
of un and ofu−n independentlyi.e., four components pern > 0 andtwo for n = 0. A possible
definition ofIk for |k| < k∗ is:

Ik =

{
{10k∗+2k + k, 2 · 10k∗+2k,−3 · 10k∗+2k} for k ≥ 0,
{10k∗+2|k|+1 − |k|, 2 · 10k∗+2|k|+1,−3 · 10k∗+2|k|+1} for k < 0.

We also defineI 0
L = {k : |k| < k∗} and

I = I 0
L ∪

( ⋃
|k|<k∗

Ik

)
.

The analog of Lemma 3.3 is

Lemma 3.5 The sets defined above have the following properties:

(A) LetIk = {k1, k2, k3}. Then, the sumk1 + k2 + k3 equalsk.

(B) The setsIk andI 0
L are all mutually disjoint.
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(C) LetS be a collection of three indices inI ,S = {k1, k2, k3}. If the sumk1+k2+k3 equals
k with |k| < k∗ then eitherS = Ik or S ⊂ I 0

L or S is of the formS = {k, k′,−k′}.

Finally, the analog of (3.4) is for|k| < k∗:

0 = −u̇k + (1− (1 + ia)k2)uk − (1 + ib)
(
(ΠLu |ΠLu|2)k + 6z3

k

)
.

Apart from these combinatorial changes the complex Ginzburg-Landau equation is treated like
the real one.

4 Strong Feller Property and Proof of Theorem 1.1

The aim of this section is to show the strong Feller property of the process defined by (1.3)
resp. (1.7).

Theorem 4.1 The Markov semigroupP t defined in (1.9) is strong Feller.

Proof of Theorem 1.1.This proof follows a well-known strategy, seee.g., [DPZ96]. First of
all, there is at least one invariant measure for the process (1.7), since for a problem in a finite
domain, the semigroupt 7→ e−At is compact, and therefore [DPZ96, Theorem 6.3.5] applies.

By the controllability Theorem 3.1, we deduce, see [DPZ96, Theorem 7.4.1], that the tran-
sition probability from any point inH to any open set inH cannot vanish,i.e., the Markov
process is irreducible. Furthermore, by Theorem 4.1 the process is strong Feller. By a classical
result of Khas’minskĭı, this implies thatP t is regular. Therefore we can use Doob’s theorem
[DPZ96, pp.42–43] to conclude that the invariant measure is unique. This completes the proof
of Theorem 1.1.

Before we start with the proof of Theorem 4.1, we explain our strategy. Because of the
polynomial nature of the nonlinearity in (1.3), the natural bounds diverge with some power
of the norm of the initial data. On the other hand, the nonlinearity is strongly dissipative at
large amplitudes. Therefore we introduce a cutoff version of the dynamics beyond some fixed
amplitude and then take the limit in which this cutoff goes to infinity. We seem to need such a
technique to get the bounds (5.11) and (5.12).

The precise definition of the cutoff versionF% of F is:

F%(x) = (1− χ(‖x‖/(3%)))F (x) ,

whereχ is a smooth, non-negative function satisfying

χ(z) =

{
1 if z > 2,
0 if z < 1.

Similarly, we define
Q%(x) = Q+ χ(‖x‖/%)Πk∗ , (4.1)

whereΠk∗ is the projection onto the frequencies belowk∗.
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Remark 4.2 These cutoffs have the following effect as a function of‖x‖:

– When‖x‖ ≤ % thenQ%(x) = Q andF%(x) = F (x).

– When% < ‖x‖ ≤ 2% thenQ%(x) depends onx andF%(x) = F (x).

– When2% < ‖x‖ ≤ 6% then all Fourier components ofQ%(x) including the ones below
k∗ are non-zero andF%(x) is proportional to aF (x) times a factor≤ 1.

– When6% < ‖x‖ then all Fourier components ofQ%(x) including the ones belowk∗ are
non-zero andF%(x) = 0.

At high amplitudes, the nonlinearity is truncated to 0. Thus, the Hörmander condition cannot be
satisfied there unless the diffusion process is non-degenerate. We achieve this non-degeneracy
by extending the stochastic forcing toall degrees of freedom when‖x‖ is large.

Instead of (1.7) we then consider the modified problem

dΦt
% = −AΦt

% dt+ (F% ◦ Φt
%) dt+ (Q% ◦ Φt

%) dW (t) , (4.2)

with Φ0
%(ξ) = ξ ∈ H. Note that the cutoffs are chosen in such a way that the dynamics ofΦt

%(ξ)
coincideswith that of Φt(ξ) as long as‖Φt(ξ)‖ < %. We will show that the solution of (4.2)
defines a Markov semigroup

P t
%ϕ(ξ) = E(ϕ ◦ Φt

%)(ξ) ,

with the following smoothing property:

Theorem 4.3 There exist exponentsµ, ν > 0, and for all% > 0 there is a constantC% such that
for everyϕ ∈ Bb(H), for everyt > 0 and for everyξ ∈ H, the functionP t

%ϕ is differentiable
and its derivative satisfies

‖DP t
%ϕ(ξ)‖ ≤ C%(1 + t−µ)(1 + ‖ξ‖ν)‖ϕ‖L∞ . (4.3)

Using this theorem, the proof of Theorem 4.1 follows from a limiting argument.

Proof of Theorem 4.1.Choosex ∈ H, t > 0, andε > 0. We denote byB the ball of radius
2‖x‖ centered around the origin inH. Using Proposition 2.3 we can find a sufficiently large
constant% = %(x, t, ε) such that for everyy ∈ B, the inequality

P
(

sup
s∈[0,t]

‖Φs(y)‖ > %
)
≤ ε

8

holds. Chooseϕ ∈ Bb(H) with ‖ϕ‖L∞ ≤ 1. We have by the triangle inequality

|P tϕ(x)− P tϕ(y)| ≤ |P tϕ(x)− P t
%ϕ(x)|+ |P t

%ϕ(x)− P t
%ϕ(y)|

+ |P tϕ(y)− P t
%ϕ(y)| .

Since the dynamics of the cutoff equation and the dynamics of the original equation coincide
on the ball of radius%, we can write, for everyz ∈ B,

|P tϕ(z)− P t
%ϕ(z)| = E|(ϕ ◦ Φt)(z)− (ϕ ◦ Φt

%)(z)|
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≤ 2‖ϕ‖L∞ P
(

sup
s∈[0,t]

‖Φs(z)‖ > %
)
≤ ε

4
.

This implies that

|P tϕ(x)− P tϕ(y)| ≤ ε

2
+ |P t

%ϕ(x)− P t
%ϕ(y)| .

By Theorem 4.3 we see that ify is sufficiently close tox then

|P t
%ϕ(x)− P t

%ϕ(y)| ≤ ε

2
.

Sinceε is arbitrary we conclude thatP tϕ is continuous when‖ϕ‖L∞ ≤ 1. The generalization
to any value of‖ϕ‖L∞ follows by linearity inϕ. The proof of Theorem 4.1 is complete.

5 Regularity of the Cutoff Process

In this section, we start the proof of Theorem 4.3. If the cutoff problem were finite dimen-
sional, a result like Theorem 4.3 could be derived easily using,e.g., the works of Ḧormander
[Hör67, Ḧor85], Malliavin [Mal78], Stroock [Str86], or Norris [Nor86]. In the present infinite-
dimensional context we need to modify the corresponding techniques, but the general idea re-
tained is Norris’. The main idea will be to treat the (infinite number of) high-frequency modes
by a method which is an extension of [DPZ96, Cer99], while the low-frequency part is handled
by a variant of the Malliavin calculus adapted from [Nor86]. It is at the juncture of these two
techniques that we need a cutoff in the nonlinearity.

5.1 Splitting and interpolation spaces

Throughout the remainder of this paper, we will again denote byHL andHH the spaces cor-
responding to the low (resp. high)-frequency parts. We slightly change the meaning of “low-
frequency” by including in the low-frequency part all those frequencies that are driven by the
noise which are inI as defined in Definition 3.2. More precisely, the low-frequency part is
now{k : |k| ≤ L− 1}, whereL = max{k : k ∈ I }+ 1. Note thatL is finite.

SinceA = 1−∆ is diagonal with respect to this splitting, we can define its low (resp. high)-
frequency partsAL andAH as operators onHL andHH. From now on,L will always denote
the dimension ofHL, which will therefore be identified withRL.4 We also allow ourselves to
switch freely between equivalent norms onRL, when deriving the various bounds.

In the sequel, we will always use the notationsDL andDH to denote the derivatives with
respect toHL (resp.HH) of a differentiable function defined onH. The words “derivative” and
“differentiable” will always be understood in the strong sense,i.e., if f : B1 → B2 with B1

andB2 some Banach spaces, thenDf : B1 → L (B1,B2), i.e., it is bounded fromB1 to B2.
We introduce the interpolation spacesHγ (for everyγ ≥ 0) defined as being equal to the

domain ofAγ equipped with the graph norm

‖x‖2
γ = ‖Aγx‖2 = ‖(1−∆)γx‖2 .

4The choice ofL above is dictated by the desire to obtain a dimension equal toL and notL + 1.
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Clearly, theHγ are Hilbert spaces and we have the inclusions

Hγ ⊂ Hδ if γ ≥ δ .

Note that in usual conventions,Hγ would be the Sobolev space of index2γ + 1. Our motiva-
tion for using non-standard notation comes from the fact that our basic space is that withone
derivative, which we callH, and thatγ measures additional smoothness in terms of powers of
the generator of the linear part.

5.2 Proof of Theorem 4.3

The proof of Theorem 4.3 is based on Proposition 5.1 and Proposition 5.2 which we now state.

Proposition 5.1 Assume that the noise satisfies condition (1.6). Then (4.2) defines a stochastic
flowΦt

% onH with the following properties which hold for anyp ≥ 1:

(A) If ξ ∈ Hγ with someγ satisfying0 ≤ γ ≤ α, the solution of (4.2) stays inHγ, with a
bound

E
(

sup
0<t<T

‖Φt
%(ξ)‖p

γ

)
≤ CT,p,%(1 + ‖ξ‖γ)p , (5.1a)

for everyT > 0. If γ ≥ 1 the solution exists in the strong sense inH.

(B) The quantityΦt
%(ξ) is in Hα with probability1 for every timet > 0 and everyξ ∈ H.

Furthermore, for everyT > 0 there is a constantCT,p,% for which

E
(

sup
0<t<T

tαp‖Φt
%(ξ)‖p

α

)
≤ CT,p,%(1 + ‖ξ‖)p . (5.1b)

(C) The mappingξ 7→ Φt
%(ξ) (for ω and t fixed) has a.s. bounded partial derivatives with

respect toξ. Furthermore, we have for everyξ, h ∈ H the bound

E
(

sup
0<t<T

‖(DΦt
%(ξ))h‖p

)
≤ CT,p,%‖h‖p , (5.1c)

for everyT > 0.

(D) For everyh ∈ H and ξ ∈ Hα, the quantity(DΦt
%(ξ))h is in Hα with probability1 for

everyt > 0. Furthermore, for aν depending only onα the bound

E
(

sup
0<t<T

tαp‖(DΦt
%(ξ))h‖p

α

)
≤ CT,p,%(1 + ‖ξ‖α)νp‖h‖p , (5.1d)

holds for everyT > 0.

(E) For everyξ ∈ Hγ with γ ≤ α, we have the small-time estimate

E
(

sup
0<t<ε

‖Φt
%(ξ)− e−Atξ‖p

γ

)
≤ CT,p,%(1 + ‖ξ‖γ)pεp/16 , (5.1e)

which holds for everyε ∈ (0, T ] and everyT > 0.

This proposition will be proved in Section 8.4.
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Proposition 5.2 There exist exponentsµ∗, ν∗ > 0 such that for everyϕ ∈ C2
b (H), everyξ ∈ Hα

and everyt > 0,
‖DP t

%ϕ(ξ)‖ ≤ C%(1 + t−µ∗)(1 + ‖ξ‖ν∗
α )‖ϕ‖L∞ . (5.2)

Proof of Theorem 4.3.Note first that for allτ > 0, one has‖Pτ
% ϕ‖L∞ ≤ ‖ϕ‖L∞ . Furthermore,

for τ > 1,
‖DPτ

% ϕ(ξ)‖ = ‖D(P1
% (Pτ−1

% ϕ))(ξ)‖ .
Therefore, if we can show (4.3) fort ≤ 1, then we find for anyτ > 1:

‖DPτ
% ϕ(ξ)‖ ≤ 2C%(1 + ‖ξ‖ν)‖Pτ−1

% ϕ‖L∞ ≤ 2C%(1 + ‖ξ‖ν)‖ϕ‖L∞ .

In view of the above, it clearly suffices to show Theorem 4.3 fort ∈ (0, 1].
We first prove the bound for the caseϕ ∈ C2

b (H). Let h ∈ H. Using the definition (1.9) of
P t

%ϕ and the Markov property of the flow we write

‖DP2t
% ϕ(ξ)h‖ = ‖DE(P t

%ϕ ◦ Φt
%)(ξ)h‖ =

∥∥∥E((DP t
%ϕ ◦ Φt

%)(ξ)DΦt
%(ξ)h

)∥∥∥
≤
√

E‖(DP t
%ϕ ◦ Φt

%)(ξ)‖
2
√

E‖DΦt
%(ξ)h‖2 .

Bounding the first square root by Proposition 5.2 and then applying Proposition 5.1 (B–C),
(with T = 1) we get a bound

‖DP2t
% ϕ(ξ)h‖ ≤ C%‖ϕ‖L∞(1 + t−µ∗)

√
E(1 + ‖Φt

%(ξ)‖ν∗
α )2

√
E‖DΦt

%(ξ)h‖2

≤ C%‖ϕ‖L∞(1 + t−µ∗)t−αν∗(1 + ‖ξ‖)ν∗‖h‖ .

Choosingµ = µ∗ + αν∗ andν = ν∗ we find (4.3) in the case whenϕ ∈ C2
b (H). The method

of extension to arbitraryϕ ∈ Bb(H) can be found in [DPZ96, Lemma 7.1.5]. The proof of
Theorem 4.3 is complete.

5.3 Smoothing properties of the transition semigroup

In this subsection we prove the smoothing bound Proposition 5.2. Thus, we will no longer
be interested in smoothing in position space as shown in Proposition 5.1 but in smoothing
properties of the transition semigroup associated to (4.2).

Important remark. In this section and up to Section 8.6 we always tacitly assume that we are
considering the cutoff equation (4.2) and we will omit the index%.

Thus, we will write Eq.(4.2) as

dΦt = −AΦt dt+ (F ◦ Φt) dt+ (Q ◦ Φt) dW (t) . (5.3)

The solution of (5.3) generates a semigroup on the spaceBb(H) of bounded Borel functions
overH = HL ⊕HH by

P tϕ = E(ϕ ◦ Φt) , ϕ ∈ Bb(H) .

Our goal will be to show that the mixing properties of the nonlinearity are strong enough to
makeP tϕ differentiable, even ifϕ is only measurable.
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We will need a separate treatment of the high and low frequencies, and so we reformulate
(5.3) as

dΦt
L = −ALΦ

t
L dt+ (FL ◦ Φt) dt+ (QL ◦ Φt) dWL(t) , Φt

L ∈ HL , (5.4a)

dΦt
H = −AHΦt

H dt+ (FH ◦ Φt) dt+QH dWH(t) , Φt
H ∈ HH , (5.4b)

whereHL andHH are defined in Section 5.1 and the cutoff version ofQ was defined in (4.1).
Note thatQH(Φt(ξ)) is independent ofξ andt by construction, which is why we can useQH in
(5.4b).

The proof of Proposition 5.2 is based on the following two results dealing with the low-
frequency part and the cross-terms between low and high frequencies, respectively.

Proposition 5.3 There exist exponentsµ, ν > 0 such that for everyϕ ∈ C2
b (H), everyξ ∈ Hα

and everyT > 0, one has∥∥∥E((DLϕ ◦ Φt)(ξ)(DLΦ
t
L)(ξ)

)∥∥∥ ≤ CT t
−µ(1 + ‖ξ‖ν

α)‖ϕ‖L∞ ,

for all t ∈ (0, T ].5

Lemma 5.4 For everyT > 0 and everyp ≥ 1, there is a constantCT,p > 0 such that for every
t ≤ T , one has the estimates (valid forhL ∈ HL andhH ∈ HH):

E sup
0<s<t

‖(DLΦ
s
H)(ξ)hL‖p ≤ CT,p t

p‖hL‖p , (5.5a)

E sup
0<s<t

‖(DHΦs
L)(ξ)hH‖p ≤ CT,p t

p/4‖hH‖p . (5.5b)

These bounds are independent ofξ ∈ H.

Remark 5.5 In the absence of the cutoff% one can prove inequalities like (5.5), but with an
additional factor of (1 + ‖ξ‖2)p on the right. This is not good enough for our strategy and is the
reason for introducing a cutoff.

The proof of Proposition 5.3 will be given in Section 6 and the proof of Lemma 5.4 will be
given in Section 8.5.

Proof of Proposition 5.2.As in the proof of Theorem 4.3, it suffices to consider timest ≤ T ,
whereT is any (small) positive constant. The proof will be performed in the spirit of [DPZ96]
and [Cer99], using a modified version of the Bismut-Elworthy formula. Take a functionϕ ∈
C2

b (H). We considerQL andQH as acting on and intoHL andHH respectively. It is possible to
write as a consequence of Itô’s formula:

(ϕ ◦ Φt)(ξ) = P tϕ(ξ) +
∫ t

0
((DP t−sϕ) ◦ Φs)(ξ) (Q ◦ Φs)(ξ) dW (s)

= P tϕ(ξ) +
∫ t

0
((DLP t−sϕ) ◦ Φs)(ξ) (QL ◦ Φs)(ξ) dWL(s)

5Recall that not only the flow, but for example also the constantCT depends on%.
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+
∫ t

0
((DHP t−sϕ) ◦ Φs)(ξ)QH dWH(s) . (5.6)

Choose someh ∈ HH. By Proposition 5.1 (D),(DHΦt
H)(ξ)h is inHα for positive times and is

bounded by (5.1d). Using condition (1.8b) we see thatQ−1
H maps toHH and so we can multiply

both sides of (5.6) by ∫ 3t/4

t/4

〈
Q−1

H (DHΦs
H)(ξ)h , dWH(s)

〉
,

where the scalar product is taken inHH. Taking expectations on both sides, the first two terms
on the right vanish becausedWL anddWH are independent and of mean zero. Thus, we get

E
(
(ϕ ◦ Φt)(ξ)

∫ 3t/4

t/4

〈
Q−1

H (DHΦs
H)(ξ)h , dWH(s)

〉)
= E

∫ 3t/4

t/4
((DHP t−sϕ) ◦ Φs)(ξ) (DHΦs

H)(ξ)h ds ,
(5.7)

We add to both sides of (5.7) the term

E
∫ 3t/4

t/4
((DLP t−sϕ) ◦ Φs)(ξ) (DHΦs

L)(ξ)h ds ,

and note that the r.h.s. can be rewritten as∫ 3t/4

t/4
DHE((P t−sϕ) ◦ Φs)(ξ)h ds =

t

2
DHE(ϕ ◦ Φt)(ξ)h ,

since by the Markov property,E(P t−sϕ ◦ Φs)(ξ) = E(ϕ ◦ Φt)(ξ). Therefore, (5.7) leads to

(DHP tϕ)(ξ)h =
2

t
E
(
(ϕ ◦ Φt)(ξ)

∫ 3t/4

t/4
〈Q−1

H (DHΦs
H)(ξ)h, dWH(s)〉

)
+

2

t
E
∫ 3t/4

t/4
((DLP t−sϕ) ◦ Φs)(ξ) (DHΦs

L)(ξ)h ds .
(5.8)

For the low-frequency part, we use the equality

(DLP tϕ)(ξ) = E
(
(DLP t/2ϕ ◦ Φt/2)(ξ)(DLΦ

t/2
L )(ξ)

)
+ E

(
(DHP t/2ϕ ◦ Φt/2)(ξ)(DLΦ

t/2
H )(ξ)

)
.

(5.9)

We introduce the Banach spacesBT,µ∗,ν∗ of measurable functionsf : (0, T ) × Hα → H, for
which

|||f |||T,µ∗,ν∗ ≡ sup
0<t<T

sup
ξ∈Hα

tµ∗‖f (t, ξ)‖
1 + ‖ξ‖ν∗

α

(5.10)

is finite. Recall that we consider here only times smaller than the (small) timeT ∈ (0, 1]
which we will fix below. Chooseµ∗ as the maximum of the constantsα and theµ appearing
in Proposition 5.3. Similarlyν∗ is the maximum of theν of Proposition 5.1 (D) and the one in
Proposition 5.3.
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We will construct aT > 0 such thatfϕ : (t, ξ) 7→ (DP tϕ)(ξ) belongs toBT,µ∗,ν∗ and that
|||fϕ|||T,µ∗,ν∗ ≤ C‖ϕ‖L∞ , thus proving Proposition 5.2. The fact thatfϕ ∈ BT,µ∗,ν∗ for everyT
if ϕ ∈ C2

b (H) is shown in [DPZ92b, Theorem 9.17], so we only have to show the bound on its
norm.

The following inequalities are obtained by applying to (5.8) in order the Cauchy-Schwarz
inequality and the definition (5.10), then (1.8b), (5.1d), and again Cauchy-Schwarz. The last
inequality is obtained by applying (5.1a) and (5.1c). This yields forh ∈ HH:

|(DHP tϕ)(ξ)h| ≤ ‖ϕ‖L∞
2

t

(
E
∫ 3t/4

t/4
‖Q−1

H (DHΦs
H)(ξ)h‖2 ds

)1/2

+
2

t
|||fϕ|||t,µ∗,ν∗ E

∫ 3t/4

t/4

1 + ‖Φs(ξ)‖ν∗
α

(t− s)µ∗
‖(DHΦs

L)(ξ)h‖ ds

≤ Ct−α‖ϕ‖L∞(1 + ‖ξ‖ν∗
α )‖h‖ (5.11)

+ Ct−µ∗|||fϕ|||t,µ∗,ν∗

E sup
s∈[ t

4
, 3t
4

]

(1 + ‖Φs(ξ)‖ν∗
α )2

1/2

×

E sup
s∈[ t

4
, 3t
4

]

‖(DHΦs
L)(ξ)h‖

2

1/2

≤ Ct−α‖ϕ‖L∞(1 + ‖ξ‖ν∗
α )‖h‖+ Ct−µ∗+1/4|||fϕ|||t,µ∗,ν∗(1 + ‖ξ‖ν∗

α )‖h‖ .

Note that this is the place where the lower bound (1.8b) on the noise is really used.
For the low-frequency part Eq.(5.9) we use first Proposition 5.3,‖P t/2ϕ‖L∞ ≤ ‖ϕ‖L∞ , and

the definition (5.10), then Cauchy-Schwarz, and finally (5.5a) and (5.1b). This leads forh ∈ HL

to:

|(DLP tϕ)(ξ)h| ≤ Ct−µ∗‖ϕ‖L∞(1 + ‖ξ‖ν∗
α ) ‖h‖

+ Ct−µ∗|||fϕ|||t,µ∗,ν∗E
(
(1 + ‖Φt/2(ξ)‖ν∗

α )‖(DLΦ
t/2
H )(ξ)h‖

)
≤ Ct−µ∗‖ϕ‖L∞(1 + ‖ξ‖ν∗

α ) ‖h‖ (5.12)

+ Ct−µ∗|||fϕ|||t,µ∗,ν∗
√

E(1 + ‖Φt/2(ξ)‖ν∗
α )2

√
E‖(DLΦ

t/2
H )(ξ)h‖2

≤ Ct−µ∗‖ϕ‖L∞(1 + ‖ξ‖ν∗
α ) ‖h‖ + Ct−µ∗+1|||fϕ|||t,µ∗,ν∗(1 + ‖ξ‖ν∗

α ) ‖h‖ .

Combining the above expressions we get for everyT ∈ (0, 1] a bound of the type

|||fϕ|||T,µ∗,ν∗ ≤ C1‖ϕ‖L∞ + C2T
1/4|||fϕ|||T,µ∗,ν∗ .

Our final choice ofT is nowT 1/4 = min{1, 1/(2C2)}, and we find

|||fϕ|||T,µ∗,ν∗ ≤ C‖ϕ‖L∞ . (5.13)

Sincefϕ(t, ξ) = (DP tϕ)(ξ), inspection of (5.10) shows that (5.13) is equivalent to (5.2). The
proof of Proposition 5.2 is complete.
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6 Malliavin Calculus

To prove Proposition 5.3 we will apply a modification of Norris’ version of the Malliavin cal-
culus. This modification takes into account some new features which are necessary due to our
splitting of the problem in high and low frequencies (which in turn was done to deal with the
infinite dimensional nature of the problem).

Consider first the deterministic PDE for a flow:

dΨt(ξ)
dt

= −AΨt(ξ) + (F ◦Ψt)(ξ) . (6.1)

This is really an abstract reformulation for the flow defined by the GL equation, andξ belongs
to a spaceH, which for our problem is a suitable Sobolev space. The linear operatorA is chosen
as1 −∆, while the non-linear termF corresponds to2u − u3 in the GL equation. Below, we
will work with approximations to the GL equation, and all we need to know is thatA : H → H
is the generator of a strongly continuous semigroup, andF will be seen to be bounded with
bounded derivatives.

For each fixedξ ∈ H we consider the following stochastic variant of (6.1):

dΨt(ξ) = −AΨt(ξ) dt+ (F ◦Ψt)(ξ) dt+ (Q ◦Ψt)(ξ) dW (t) . (6.2)

with initial conditionΨ0(ξ) = ξ. Furthermore,W is the cylindrical Wiener process on a sepa-
rable Hilbert spaceW andQ is a strongly differentiable map fromH to L 2(W ,H), the space
of bounded linear Hilbert-Schmidt operators fromW toH.

We next introduce the notion of directional derivative (in the direction of the noise) and the
reader familiar with this concept can pass directly to (6.3). To understand this concept consider
first the case of a functiont 7→ vt

i ∈ W. Then the variationDvi
Ψt of Ψt in the directionvi is

obtained by replacingdW (t) by dW (t) + εvt
i dt and it satisfies the equation

dDvi
Ψt = (−ADvi

Ψt + (DF ◦Ψt)Dvi
Ψt) dt+ ((DQ ◦Ψt)Dvi

Ψt) dW (t)

+ (Q ◦Ψt)vt
i dt .

Intuitively, the first line comes from varyingΨt with respect to the noise and the second comes
from varying the noise itself.

We will need a finite numberL of directional derivatives, and so we introduce some more
general notation. We combineL vectorsvi as used above into a matrix calledv which is an
element ofΩ× [0,∞) →WL. We identifyWL with L (RL,W). Note that we now allowv to
depend onΩ, and to make things work, we requirev to be a predictable stochastic process,i.e.,
vt only depends on the noise before timet. The stochastic processGt

v ∈ HL (corresponding to
DvΨ

t) is then defined as the solution of the equation

dGt
vh =

(
−AGt

v + (DF ◦Ψt)Gt
v + (Q ◦Ψt)vt

)
h dt

+
(
(DQ ◦Ψt)Gt

vh
)
dW (t) ,

G0
v = 0 ,

(6.3)

which has to hold for allh ∈ RL.
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Having given the detailed definition ofGt
v, we will denote it henceforth by the more sug-

gestive
Gt

v(ξ) = DvΨ
t(ξ) ,

to make clear that it is a directional derivative. We use the notationDv to distinguish this
derivative from the derivativeD with respect to the initial conditionξ.

For (6.2) and (6.3) to make sense, two assumptions onF ,Q andv are needed:

A1 F : H → H andQ : H → L 2(W ,H) are of at most linear growth and have bounded
first and second derivatives.

A2 The stochastic processt 7→ vt is predictable, has a continuous version, and satisfies

E
(

sup
s∈[0,t]

‖vs‖p
)
<∞ ,

for everyt > 0 and everyp ≥ 1. (The norm being the norm ofWL.)

It is easy to see that these conditions imply the hypotheses of Theorem 8.9 for the problems
(6.2) and (6.3). ThereforeGt

v is a well-defined strongly Markovian stochastic process.
With these notations one has the well-known Bismut integration by parts formula [Nor86].

Proposition 6.1 Let Ψt and DvΨ
t be defined as above and assumeA1 and A2 are satisfied.

LetB ⊂ H be an open subset ofH such thatΨt ∈ B almost surely and letϕ : B → R be a
differentiable function such that

E‖ϕ(Ψt)‖2 + E‖Dϕ(Ψt)‖2 <∞ .

Then we have for everyh ∈ RL the following identity inR:

E(Dϕ(Ψt)DvΨ
th) = E

(
ϕ(Ψt)

∫ t

0
〈vsh, dW (s)〉

)
, (6.4)

where〈·, ·〉 is the scalar product ofW.

Remark 6.2 The Eq.(6.4) is useful because it relates the expectation ofDϕ to that ofϕ. In
order to fully exploit (6.4) we will need to get rid of the factorDvΨ

t. This will be possible by a
clever choice ofv. This procedure is explained for example in [Nor86] but we will need a new
variant of his results because of the high-frequency part. In the sequel, we will proceed in two
steps.We need only bounds onDLϕ, since the smoothness of the high-frequency part follows
by other means.Thus, itsufficesto constructDvΨ

t in such a way thatΠLDvΨ
t is invertible,

whereΠL is the orthogonal projection ontoHL. The construction ofΠLDvΨ
t follows closely

the presentation of [Nor86]. However, we also wantΠHDvΨ
t = 0 and this elimination of the

high-frequency part seems to be new.

Proof. The finite dimensional case is stated (with slightly different assumptions on the function
F ) in [Nor86]. The extension to the infinite-dimensional setting can be done without major
difficulty. By A1–A2 and Theorem 8.9, we ensure that all the expressions appearing in the
proof and the statement are well-defined. ByA2, we can use It̂o’s formula to ensure the validity
of the assumptions for the infinite-dimensional version of Girsanov’s theorem [DPZ96].
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6.1 The construction ofv

In order to use Proposition 6.1 we will constructv = (vL, vH) in such a way that the high-
frequency part ofDvΦ

t = (DvΦ
t
L,DvΦ

t
H) vanishes. This construction is new and will be ex-

plained in detail in this subsection.

Notation. The equations which follow are quite involved. To keep the notation at a reasonable
level without sacrificing precision we will adopt the following conventions:

(DLFL)t ≡ (DLFL) ◦ Φt ,

(DLQL)t ≡ (DLQL) ◦ Φt ,

and similarly for other derivatives of theQ and theF . Furthermore, the reader should note that
DLQL is a linear map fromHL to the linear mapsHL → HL and therefore, below, (DLQL)h
with h ∈ HL is a linear mapHL → HL. The dimension ofHL isL <∞.

Inspired by [Nor86], we define theL× L matrix-valued stochastic processesU t
L andV t

L by the
following SDE’s, which must hold for everyh ∈ HL:

dU t
Lh = −ALU

t
Lh dt+ (DLFL)tU t

Lh dt+ ((DLQL)tU t
Lh) dWL(t) ,

U0
L = I ∈ L (HL,HL) , (6.5a)

dV t
Lh = V t

LALh dt− V t
L (DLFL)th dt− V t

L ((DLQL)th) dWL(t)

+
L−1∑
i=0

V t
L

(
(DLQL)t((DLQL)th)ei

)
ei dt ,

V 0
L = I ∈ L (HL,HL) . (6.5b)

The last term in the definition ofV t
L will be written as

L−1∑
i=0

V t
L ((DLQ

i
L)t)2h dt ,

whereQi
L is theith column of the matrixQL.

For small times, the processU t
L is an approximation to the partial JacobianDLΦ

t
L, andV t

L is
an approximation to its inverse.

We first make sure that the objects in (6.5) are well-defined. The following lemma summa-
rizes the properties ofUL andVL which we need later.

Lemma 6.3 The processesU t
L andV t

L satisfy the following bounds. For everyp ≥ 1 and all
T > 0 there is a constantCT,p,% independent of the initial data (forΦt) such that

E sup
t∈[0,T ]

(‖U t
L‖p + ‖V t

L‖p) ≤ CT,p,% , (6.6a)

E( sup
t∈[0,ε]

‖V t
L − I‖p) ≤ CT,p,%ε

p/2 , (6.6b)

for all ε < T . Furthermore,VL is the inverse ofUL in the sense thatV t
L = (U t

L)−1 almost surely
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Proof. The bound (6.6a) is a straightforward application of Theorem 8.9 whose conditions are
easily checked. (Note that we are here in a finite-dimensional, linear setting.) To prove (6.6b),
note thatI is the initial condition forVL. One writes (6.5b) in its integral form and then the result
follows by applying (6.6a). The last statement can be shown easily by applying Itô’s formula to
the productV t

LU
t
L. (In fact, the definition ofVL was precisely made with this in mind.)

We continue with the construction ofv. SinceA andQ are diagonal with respect to the
splittingH = HL ⊕HH, we can write (6.3) as

dDvΦ
t
L =

(
−AL DvΦ

t
L + (DLFL)t DvΦ

t
L (6.7a)

+ (DHFL)t DvΦ
t
H +Qt

Lv
t
L

)
dt

+
(
(DLQL)t DvΦ

t
L

)
dWL(t)

+
(
(DHQL)t DvΦ

t
H

)
dWL(t) ,

dDvΦ
t
H =

(
−AH DvΦ

t
H + (DLFH)t DvΦ

t
L (6.7b)

+ (DHFH)t DvΦ
t
H +QHv

t
H

)
dt ,

with zero initial condition. Since we want to consider derivatives with respect to the low-
frequency part, we would like to define (implicitly)vt

H as

vt
H = −Q−1

H (DLFH)t DvΦ
t
L .

In this way, the solution of (6.7b) would beDvΦ
t
H ≡ 0. We next would define the “directions”

vL andvH by

vt
L = (V t

L Q
t
L)
∗ ,

vt
H = −Q−1

H (DLFH)t DvΦ
t
L ,

(6.8)

whereDvΦ
t
L is the solution to (6.7a) withDvΦ

t
H replaced by0 andvL replaced by(V t

L Q
t
L)
∗.

Here,X∗ denotes the transpose of the real matrixX.
The implict problem (6.8) can be somewhat simplified by the following device: Since we

are constructing a solution of (6.7) whose high-frequency part is going to vanish, we consider
instead the simpler equation foryt ∈ L (HL,HL):

dyt =
(
−ALy

t + (DLFL)tyt +Qt
L(V

t
LQ

t
L)
∗
)
dt+ ((DLQL)tyt) dWL(t) , (6.9)

with y0 = 0, and where we use again the notationF t = F ◦ Φt, and similar notation forQ.
The verification that (6.9) is well-defined and can be bounded is again a consequence of

Theorem 8.9 and is left to the reader.Given the solution of (6.9) we proceed to make our
definitive choice ofvt

L andvt
H:

Definition 6.4 Given an initial conditionξ ∈ Hα (for Φt) and a cutoff% < ∞ we define
vt = vt

L ⊕ vt
H by

vt
L ≡ (V t

L Q
t
L)
∗ = (V t

L (QL ◦ Φt))∗ ,

vt
H ≡ −Q−1

H (DLFH)t yt = −Q−1
H ((DLFH) ◦ Φt) yt ,

(6.10)

whereΦt solves (5.3),V t
L is the solution of (6.5b), andyt solves (6.9).



UNIQUENESS OF THEINVARIANT MEASURE 55

Lemma 6.5 The processvt satisfies for allp ≥ 1 and all t > 0 :

E
(

sup
s∈[0,t]

‖vs‖p
)
< Ct,p,%(1 + ‖ξ‖α)p ,

i.e., it satisfies assumptionA2 of Proposition 6.1.

Proof. By Proposition 5.1 (B),Φt is inHα for all t ≥ 0. In Lemma 8.1P6, it will be checked
thatDLFH mapsHα into L (HL,Hα ∩ HH) and that this map has linear growth. By thelower
bound(1.6) on the amplitudesqk, we see thatQ−1

H is bounded fromHα ∩ HH toHH and thus
the assertion follows.

We now verify thatDvΦ
t
H ≡ 0. Indeed, consider the equations (6.7). This is a system for two

unknowns,Y t = DvΦ
t
L andX t = DvΦ

t
H. For our choice ofvt

L andvt
H this system takes the

form

d Y t =
(
−AL Y

t + (DLFL)t Y t (6.11a)

+ (DHFL)tX t +Qt
L(V t

LQ
t
L)∗
)
dt

+
(
(DLQL)t Y t

)
dWL(t)

+
(
(DHQL)tX t

)
dWL(t) ,

dX t =
(
−AH X

t + (DLFH)t Y t (6.11b)

+ (DHFH)tX t − (DLFH)tyt
)
dt .

By inspection, we see thatX t ≡ 0 and

dY t = (−ALY
t + (DLFL)tY t) dt+ ((DLQL)t Y t) dWL(t) +Qt

L(V t
LQ

t
L)∗ dt (6.12)

solve the problem,i.e., Y t = yt, by the construction ofyt. Applying the It̂o formula to the
productV t

LY
t and using Eqs.(6.5b) and (6.12), we see immediately that we have definedY t =

DvΦ
t
L in such a way that

d(V t
L DvΦ

t
L) = V t

LQ
t
L(Qt

L)∗(V t
L )∗ dt ,

because all other terms cancel. Thus we finally have shown

Theorem 6.6 Given an initial conditionξ ∈ Hα (for Φt) and a cutoff% < ∞, the following is
true: If vt is given by Definition 6.4 then

DvΦ
t
L = U t

L

∫ t

0
V s

L ((QLQ
∗
L) ◦ Φs)(V s

L )∗ ds ≡ U t
LC

t
L ,

DvΦ
t
H ≡ 0 .

(6.13)

Definition 6.7 We will call the matrixCt
L thepartial Malliavin matrixof our system.
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7 The Partial Malliavin Matrix

In this section, we estimate the partial Malliavin matrixCt
L from below. We fix some timet > 0

and denote bySL the unit sphere inRL. Our bound is

Theorem 7.1 There are constantsµ, ν ≥ 0 such that for everyT > 0 and everyp ≥ 1 there is
aCT,p,% such that for all initial conditionsξ ∈ Hα for the flowΦt and all t < T , one has

E
(
(detCt

L)
−p
)
≤ CT,p,%t

−µp(1 + ‖ξ‖α)νp .

Corollary 7.2 There are constantsµ, ν ≥ 0 such that for everyT > 0 and everyp ≥ 1 there is
aCT,p,% such that for all initial conditionsξ ∈ Hα for the flowΦt and all t < T , one has, with
v given by Definition 6.4:

E‖(DvΦ
t
L)
−p‖ ≤ CT,p,%t

−µp(1 + ‖ξ‖α)νp .

This corollary follows from (DvΦ
t
L)−1 = (Ct

L)−1V t
L and Eq.(6.6a).

As a first step, we formulate a bound from which Theorem 7.1 follows easily.

Theorem 7.3 There are aµ > 0 and aν > 0 such that for everyp ≥ 1, everyt < T and every
ξ ∈ H2, one has

P
(

inf
h∈SL

∫ t

0
‖Qs

L(V
s

L )∗h‖2 ds < ε
)
≤ CT,p,%ε

pt−µp(1 + ‖ξ‖2)
νp ,

withCT,p,% independent ofξ.

Proof of Theorem 7.1.Note that
∫ t
0 ‖Qs

L(V s
L )∗h‖2 ds is, by Eq.(6.13), nothing but the quantity

〈h,Ct
Lh〉. Then, Theorem 7.1 follows at once.

The proof of Theorem 7.3 is largely inspired from [Nor86, Sect. 4], but we need some new
features to deal with the infinite dimensional high-frequency part. This will take up the next
three subsections.

Our proof needs a modification of the Lie brackets considered when we study the Hörmander
condition. We explain first these identities in a finite dimensional setting.

7.1 Finite dimensional case

Throughout this subsection we assume that bothHL andHH are finite dimensional and we
denote byN the dimension ofH. The functionQ mapsH to L (H,H), and we denote by
Qi : H → H its ith column (i = 0, . . . , N − 1).6 Finally, F̂ is the drift (in this section, we
absorb the linear part of the SDE intôF = −A+F , to simplify the expressions). The equation
for Φt is

Φt(ξ) = ξ +
∫ t

0
(F̂ ◦ Φs)(ξ) ds+

∫ t

0

N−1∑
i=0

(Qi ◦ Φs)(ξ) dwi(s) .

6There is a slight ambiguity of notation here, sinceQi really meansQ%,i which is not the same asQ%.
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Let K : H → HL be a smooth function whose derivatives are all bounded and define
Kt = K ◦ Φt, F̂ t = F̂ ◦ Φt, andQt

i = Qi ◦ Φt. We then have by It̂o’s formula

dKt = (DK)tF̂ t dt+
N−1∑
i=0

(DK)tQt
i dwi(t) + 1

2

N−1∑
i=0

(D2K)t(Qt
i;Q

t
i) dt . (7.1)

We next rewrite the equation (6.5) forV t
L as:

dV t
L = −V t

L (DLF̂L)t dt−
L−1∑
i=0

V t
L (DLQi)

t dwi(t) +
L−1∑
i=0

V t
L ((DLQi)

t)2 dt .

By Itô’s formula, we have therefore the following equation for the productV t
LK

t:

d(V t
LK

t) = −V t
L (DLF̂L)tKt dt− V t

L

L−1∑
i=0

(DLQi)
tKt dwi(t)

+ V t
L

L−1∑
i=0

((DLQi)
t)2Kt dt+ V t

L (DK)tF̂ t dt

+ V t
L

N−1∑
i=0

(DK)tQt
i dwi(t) (7.2)

+ 1
2
V t

L

N−1∑
i=0

(D2K)t(Qt
i;Q

t
i) dt

− V t
L

L−1∑
i=0

(DLQi)
t(DK)tQt

i dt .

By construction,DLQi = 0 for i ≥ L and therefore we can extend all the sums above toN − 1.
The following definition is useful to simplify (7.2). LetA : H → H andB : H → HL

be two functions with continuous bounded derivatives. We define theprojected Lie bracket
[A,B]L : H → HL by

[A,B]L(x) = ΠL[A,B](x) = (DB(x))A(x)− (DLAL(x))B(x) .

A straightforward calculation then leads to

d(V t
LK

t) = V t
L

(
[F̂ ,K]tL + 1

2

N−1∑
i=0

[Qi, [Qi, K]L]
t
L

)
dt

+ V t
L

N−1∑
i=0

[Qi, K]tL dwi(t) (7.3)

+ 1
2
V t

L

N−1∑
i=0

(
((DLQi)

t)2Kt − (DK)t(DQi)
tQt

i

+ (DDLQi)
t(Qt

i;K
t)
)
dt .

Note next that fori < L, bothK andQi map toHL and thereforeDDLQi(Qi;K) equals
D2

LQi(Qi;K) wheni < L and is0 otherwise. Similarly, (DK)(DQi)Qi equals (DK)(DLQi)Qi

wheni < L and vanishes otherwise. Thus, the last sum in (7.3) only extends toL− 1.
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In order to simplify (7.3) further, we define the vector fieldF̃ : H → H by

F̃ = F̂ − 1
2

L−1∑
i=0

(DLQi)Qi .

Then we get

d(V t
LK

t) = V t
L

(
[F̃ ,K]tL + 1

2

N−1∑
i=0

[Qi, [Qi, K]L]
t
L

)
dt+ V t

L

N−1∑
i=0

[Qi, K]tL dwi(t) .

This is very similar to [Nor86, p. 128], who uses conventional Lie brackets instead of [·, ·]L .

7.2 Infinite dimensional case

In this case, some additional care is needed when we transcribe (7.1). The problem is that
the stochastic flowΦt solves (5.4) in the mild sense but not in the strong sense. Nevertheless,
this technical difficulty will be circumvented by choosing the initial condition inHα. We have
indeed by Proposition 5.1 (A) that if the initial condition is inHγ with γ ∈ [1, α], then the
solution of (5.4) is in the same space. Thus, Proposition 5.1 allows us to use Itô’s formula also
in the infinite dimensional case.

For any two Banach (or Hilbert) spacesB1, B2, we denote byP (B1,B2) the set of allC∞
functionsB1 → B2, which are polynomially bounded together with all their derivatives. Let
K ∈ P (H,HL) andX ∈ P (H,H). We define as above [X,K]L ∈ P (H,HL) by

[X,K]L(x) = (DK(x))X(x)− (DLXL(x))K(x) .

Furthermore, we define [A,K]L ∈ P (D(A),HL) by the corresponding formula,i.e.,

[A,K]L(x) = (DK(x))Ax− ALK(x) ,

whereA = 1 − ∆. Notice that ifK is a constant vector field,i.e., DK = 0, then [A,K]L

extends uniquely to an element ofP (H,HL).
We choose again the basis{ei}∞i=0 of Fourier modes inH (see Eq.(1.5)) and definedwi(t) =

〈ei, dW (t)〉. We also define the stochastic processKt(ξ) = (K ◦ Φt)(ξ) and

F̃ = F − 1
2

L−1∑
i=0

(DLQi)Qi ,

whereQi(x) = Q(x)ei. Then one has

Proposition 7.4 Let ξ ∈ H1 andK ∈ P (H,HL). Then the equality

V t
L (ξ)Kt(ξ) = K(ξ) +

∫ t

0
V s

L (ξ)
∞∑
i=0

[Qi, K]sL(ξ) dwi(s)

+
∫ t

0
V s

L (ξ)
(
−[A,K]sL(ξ) + [F̃ ,K]sL(ξ)

)
ds

+ 1
2

∫ t

0
V s

L (ξ)
∞∑
i=0

[Qi, [Qi, K]L]
s
L(ξ) ds ,

holds almost surely. Furthermore, the same equality holds ifξ ∈ H2 andK ∈ P (H1,HL).
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Note that by [A,K]sL(ξ) we mean
(
DK(Φs(ξ))

)
(AΦs(ξ))− ALK(Φs(ξ)).

Proof. This follows as in the finite dimensional case by Itô’s formula.

7.3 The restricted Hörmander condition

The condition for having appropriate mixing properties is the following Hörmander-like condi-
tion.

Definition 7.5 Let K = {K (i)}M
i=1 be a collection of functions inP (H,HL). We say thatK

satisfies therestricted Ḧormander conditionif there exist constantsδ, R > 0 such that for every
h ∈ HL and everyy ∈ H one has

sup
K∈K

inf
‖x−y‖≤R

〈h,K(x)〉2 ≥ δ‖h‖2 . (7.4)

We now construct the setK for our problem. We define the operator

[X0, · ]L : P (Hγ,HL) → P (Hγ+1,HL)

by

[X0, K]L = −[A,K]L + [F,K]L + 1
2

∞∑
i=0

[Qi, [Qi, K]L]L −
1
2

L−1∑
i=0

[(DLQi)Qi, K]L .

This is a well-defined operation sinceQ is Hilbert-Schmidt andDQ is finite rank and we can
write

∞∑
i=0

[Qi, [Qi, K]L]L =
∞∑
i=0

(D2K)(Qi;Qi) + r ,

with r a finite sum of bounded terms.

Definition 7.6 We define

– K0 = {Qi, with i = 0, . . . , L− 1},
– K1 = {[X0, Qi]L, with i = k∗, . . . , L− 1},
– K` = {[Qi, K]L, with K ∈ K`−1 andi = k∗, . . . , L− 1}, when` > 1.

Finally,
K = K0 ∪ · · · ∪ K3 .

7

Remark 7.7 Since for i ≥ k∗ theQi are constant vector fields, the quantity [X0, K] is in
P (H,HL) and not only inP (H1,HL). Furthermore, ifK ∈ K thenDjK is bounded for all
j ≥ 0.

We have

Theorem 7.8 The setK constructed above satisfies the restricted Hörmander condition for the
cutoff GL equation if% is chosen sufficiently large. Furthermore, the inequality (7.4) holds for
R = %/2. Finally, δ > δ0 > 0 for all sufficiently large%.

7The number 3 is the power 3 inu3.
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Proof. The basic idea of the proof is as follows: The leading term ofF is the cubic termum

with m = 3. Clearly, if i1, i2, i3 are any 3 modes, we find

[ei1 , [ei2 , [u 7→ u3, ei3]L]L]L =
∑

k=±i1±i2±i3

CkΠLek , (7.5)

where thee` are the basis vectors ofH defined in (1.5), and theCk arenon-zerocombinatorial
constants. By Lemma 3.3 the following is true: For every choice of a fixedk the three numbers
i1, i2, andi3 of Ik satisfy

– For j = 1, 2, 3 one hasij ∈ {k∗, . . . , L− 1}.
– If |k| < k∗ exactly one of the six sums±i1 ± i2 ± i3 lies in the set{0, . . . , k∗ − 1} and

exactly one lies in{−(k∗ − 1), . . . , 0}.
In particular, the expression (7.5) does not depend onu. If instead ofu3 we take a lower power,
the triple commutator will vanish.

The basic idea has to be slightly modified because of the cutoff%. First of all, the constant
R in the definition of the Ḧormander condition is set toR = %/2. Consider first the case where
‖x‖ ≥ 5%/2. In that case we see from (4.1) that theQ%,i, viewed as vector fields, are of the
form

Q%,i(x) =

{
(qi + 1)ei, if i < k∗,

qiei, if i ≥ k∗.

Since these vectors span a basis ofHL the inequality (7.4) follows in this case (already by
choosing onlyK ∈ K0).

Consider next the more delicate case when‖x‖ ≤ 5%/2.

Lemma 7.9 For all ‖x‖ ≤ 3% one has for{i1, i2, i3} = Ik the identity

[ei1 , [ei2 , [X
0, ei3]L]L]L(x) =

∑
k=±i1±i2±i3

CkΠLek + r%(x) , (7.6)

wherer% satisfies a bound
‖r%(x)‖ ≤ C%−1 ,

with the constantC independent ofx and ofk < k∗.

Proof. In [X0, ·]L there are 4 terms. The first,A, leads successively to [A, ei3 ]L = (1 + i23)ei3 ,
which is constant, and hence the Lie bracket withei2 vanishes. The second term contains the
non-linear interactionF%. Since‖x‖ ≤ 3% one hasF%(x) = F (x). Thus, (7.5) yields the leading
term of (7.6). The two remaining terms will contribute tor%(x). We just discuss the first one.
We have, using (4.1),

[Q%,i, ei3]L(x) = −DQ%,i(x)ei3 = −1

%
χ′(‖x‖/%)〈x, ei3〉

‖x‖
Πk∗ei .

This gives clearly a bound of order%−1 for this Lie bracket, and the further ones are handled in
the same way.
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We continue the proof of Theorem 7.8. Whenk < k∗, we consider the elements ofK3. They
are of the form

[Q%,i1 , [Q%,i2 , [X
0, Q%,i3 ]L]L]L(x) = qi1qi2qi3

( ∑
k=±i1±i2±i3

CkΠLek + r%(x)
)
.

Thus, for% = ∞ these vectors together with theQi with i ∈ {k∗, . . . , L−1} spanHL (indepen-
dently ofy with ‖y‖ ≤ 3%) and therefore (7.5) holds in this case, if‖x‖ ≤ 5%/2 andR = %/2.
The assertion for finite, but large enough% follows immediately by a perturbation argument.
This completes the case of‖x‖ ≤ 5%/2 and hence the proof of Theorem 7.8.

Proof of Theorem 7.3.The proof is very similar to the one in [Nor86], but we have to keep track
of thex, t-dependence of the estimates. First of all, choosex ∈ H2 andt ∈ (0, t0].

From now on, we will use the notationO(ν) as a shortcut forC(1 + ‖x‖ν
2), where the

constantC may depend ont0 andp, but is independent ofx andt. Denote byR the constant
found in Theorem 7.8 and define the subsetBx of H2 by

Bx = {y ∈ H2 : ‖y − x‖ ≤ R and ‖y‖γ ≤ ‖x‖γ + 1 for γ = 1, 2} .

We also denote byB(I) a ball of (small) radiusO(1/L) centered at the identity in the space of
all L × L matrices. (Recall thatL is the dimension ofHL, and thatK ∈ K maps toHL.) We
then have a bound of the type

sup
y∈Bx

sup
K∈K

∞∑
i=0

‖[Qi, K]L(y)‖2 ≤ O(0) . (7.7)

This is a consequence of the fact thatQQ∗ is trace class and thus the sum converges and its
principal term is equal to

Tr(Q∗(y) (DK)∗(y) (DK)(y)Q(y))

= Tr((DK)(y)Q(y)Q∗(y) (DK)∗(y))

=
L−1∑
i=0

‖Q∗(y) (DK)∗(y)ei‖2 ≤ C% .

The last inequality follows from Remark 7.7. The other terms form a finite sum containing
derivatives of theQi and are bounded in a similar way.

We have furthermore bounds of the type

sup
y∈Bx

sup
K∈K

‖[X0, K]L(y)‖2 ≤ O(ν) ,

sup
y∈Bx

sup
K∈K

‖[X0, [X0, K]L]L(y)‖2 ≤ O(ν) ,

sup
y∈Bx

sup
K∈K

∞∑
i=0

‖[Qi, [X
0, K]L]L(y)‖2 ≤ O(ν) ,

(7.8)

whereν = 1.
Let SL be the unit sphere inHL. By the assumptions onK and the choice ofB(I) we see

that:



62 UNIQUENESS OF THEINVARIANT MEASURE

(A) For everyh0 ∈ SL, there exist aK ∈ K and a neighborhoodN of h0 in SL such that

inf
y∈Bx

inf
V ∈B(I)

inf
h∈N

〈V K(y), h〉2 ≥ δ

2
,

with δ the constant appearing in (7.4).

Next, we define a stopping timeτ by τ = min{t, τ1, τ2} with

τ1 = inf{s ≥ 0 : Φs(x) 6∈ Bx} ,

τ2 = inf{s ≥ 0 : V s
L (x) 6∈ B(I)} ,

t < T as chosen in the statement of Theorem 7.3.

It follows easily from Proposition 5.1 (E) that the probability ofτ1 being small (meaning that in
the sequel we will always assumeε ≤ 1) can be bounded by

P(τ1 < ε) ≤ Cp(1 + ‖x‖2)
16pεp ,

with Cp independent ofx. Similarly, using Lemma 6.3, we see that

P(τ2 < ε) ≤ Cpε
p .

Observing thatP(t < ε) < t−pεp and combining this with the two estimates, we get for every
p ≥ 1:

P(τ < ε) ≤ O(16p)t−pεp .

From this and (A) we deduce

(B) for everyh0 ∈ SL there exist aK ∈ K and a neighborhoodN of h0 in SL such that for
ε < 1,

sup
h∈N

P
(∫ τ

0
〈V s

L (x)Ks(x), h〉2 ds ≤ ε
)
≤ P(τ < 2ε/δ) ≤ O(16p)t−pεp ,

with δ the constant appearing in (7.4).

Following [Nor86], we will show below that (B) implies:

(C) for everyh0 ∈ SL there exist ani ∈ {k∗, . . . , L− 1}, a neighborhoodN of h0 in SL and
constantsν, µ > 0 such that forε < 1 andp > 1 one has

sup
h∈N

P
(∫ τ

0
〈V s

L (x)Qs
i (x), h〉2 ds ≤ ε

)
≤ O(νp)t−µpεp .

Remark 7.10 Note that for small‖x‖,Qi(x) = Qi,%(x) may be 0 wheni < k∗, but the point is
that then we can find anotheri for which the inequality holds.

By a straightforward argument, given in detail in [Nor86, p. 127], one concludes that (C) implies
Theorem 7.3.

It thus only remains to show that (B) implies (C). We follow closely Norris and choose a
K ∈ K such that (B) holds. IfK happens to be inK0 then it is equal to aQi, and thus we
already have (C). Otherwise, assumeK ∈ Kj with j ≥ 1. Then we use a Martingale inequality.
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Lemma 7.11 LetH be a separable Hilbert space andW (t) be the cylindrical Wiener process
onH. Letβt be a real-valued predictable process andγt, ζt be predictableH-valued processes.
Define

at = a0 +
∫ t

0
βs ds+

∫ t

0
〈γs, dW (s)〉 ,

bt = b0 +
∫ t

0
as ds+

∫ t

0
〈ζs, dW (s)〉 .

Supposeτ ≤ t0 is a bounded stopping time such that for some constantC0 <∞ we have

sup
0<s<τ

{|βs|, |as|, ‖ζs‖, ‖γs‖} ≤ C0 .

Then, for everyp > 1, there exists a constantCp,t0 such that

P
(∫ τ

0
(bs)2 ds < ε20 and

∫ τ

0
(|as|2 + ‖ζs‖2) ds ≥ ε

)
≤ Cp,t0 (1 + C6

0 )pεp ,

for everyε ≤ 1.

Proof. The proof is given in [Nor86], but without the explicit dependence onC0. If we follow
his proof carefully we get an estimate of the type

P
(∫ τ

0
(bs)2 ds < ε10 and

∫ τ

0
(|as|2 + ‖ζs‖2) ds ≥ (1 + C3

0 )ε
)
≤ C1 (1 + C12

0 )pεp .

Replacingε by ε2 and making the assumptionε < 1/(1 + C3
0 ), we recover our statement. The

statement is trivial forε > 1/(1 + C3
0 ), since any probability is always smaller than1.

We apply this inequality as follows: Define, forK0 ∈ K,

at(x) = 〈V t
L ([X0, K0]

t
L)(x), h〉 ,

bt(x) = 〈V t
LK

t
0(x), h〉 ,

βt(x) = 〈V t
L ([X0, [X0, K0]L]

t
L)(x), h〉 ,

(γt)i(x) = 〈V t
L ([Qi, [X

0, K0]L]
t
L)(x), h〉 ,

(ζt)i(x) = 〈V t
L ([Qi, K0]

t
L)(x), h〉 .

In this expression,ζt(x) ∈ H, (ζt)i(x) = 〈ζt(x), ei〉 and similarly for theγt. It is clear by
Proposition 7.4, Eq.(7.7), and Eq.(7.8) that the assumptions of Lemma 7.11 are satisfied with
C0 = O(ν) for someν > 0.

We continue the proof that (B) implies (C) in the case whenK ∈ Kj, with j = 1. Then, by
the construction ofKj with j ≥ 1, there is aK0 ∈ Kj−1 such that we have eitherK = [Qi, K0]L

for somei ∈ {k∗, . . . , L−1}, orK = [X0, K0]L. In fact, forj = 1 only the second case occurs
andK0 = Qi for somei, but we are already preparing an inductive step. Applying Lemma 7.11,
we have for everyε ≤ 1:

P
( ∫ τ

0
〈V s

L K
s
0(x), h〉2 ds < ε and

∫ τ

0

(
〈V s

L [X0, K0]
s
L(x), h〉2
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+
∞∑
i=0

〈V s
L [Qi, K0]

s
L(x), h〉2

)
ds ≥ ε1/20

)
≤ O(6νp)εp/20 .

Since the second integral above is always larger than
∫ τ
0 〈V t

LK
t(x), h〉2 dt, the probability for it

to be smaller thanε1/20 is, by (B), bounded byO(16p)t−pεp/20. This implies (replacingν by
max{6ν, 16}) that

P
(∫ τ

0
〈V s

L K
s
0(x), h〉2 ds < ε

)
≤ O(νp)t−pεp/20 .

Since forj = 1 we haveK0 = Qi with i ∈ {k∗, . . . , L−1}, we have shown (C) in this case. The
above reasoning is repeated forj = 2 andj = 3, by iterating the above argument. For example,
if K = [Qi1 , [X

0, Qi2]L]L ,with i1, i2 ∈ {k∗, . . . , L− 1}, we apply Lemma 7.11 twice, showing
the first time that〈[X0, Qi2]L, h〉2 is unlikely to be small and then again to show that〈Qi2 , h〉2
is also unlikely to be small (with other powers ofε), which is what we wanted. Finally, since
everyK used in (B) is inK, at most 3 such invocations of Lemma 7.11 will be sufficient to
conclude that (C) holds. The proof of Theorem 7.3 is complete.

7.4 Estimates on the low-frequency derivatives (Proof of Proposition 5.3)

Having proven the crucial bound Theorem 7.1 on the reduced Malliavin matrix, we can now
proceed to prove Proposition 5.3,i.e., the smoothing properties of the dynamics in the low-
frequency part. For convenience, we restate it here.

Proposition 7.12 There exist exponentsµ, ν > 0 such that for everyϕ ∈ C2
b (H), everyξ ∈ Hα

and everyT > 0, one has∥∥∥E((DLϕ ◦ Φt)(ξ)(DLΦ
t
L)(ξ)

)∥∥∥ ≤ CT t
−µ(1 + ‖ξ‖ν

α)‖ϕ‖L∞ , (7.9)

for all t ∈ (0, T ].

Proof. The proof will use the integration by parts formula (6.4) together with Theorem 7.1.
Fix ξ ∈ Hα andt > 0. In this proof, we omit the argumentξ to gain legibility, but it will be
understood that the formulas do generally only hold if evaluated at someξ ∈ Hα. We extend
our phase space to includeDLΦ

t, V t
L andDvΦ

t
L. We define a new stochastic processΨt by

Ψt = (Φt,DvΦ
t
L, DLΦ

t, V t
L ) ∈ H̃ = H⊕ RL·L ⊕HL ⊕ RL·L .

Applying the definitions of these processes, we see thatΨt is defined by the autonomous SDE
given by

dΦt = −AΦt dt+ F (Φt) dt+Q(Φt) dW (t) ,

dDLΦ
t = −ADLΦ

t dt+DF (Φt)DLΦ
t dt+DQ(Φt)DLΦ

t dW (t) ,

dV t
L = V t

LAL dt− V t
L DLFL(Φt) dt− V t

LDLQL(Φt) dWL(t)

+ V t
L

L−1∑
i=0

(DLQ
i
L(Φt))2 dt ,

dDvΦ
t
L = −ALDvΦ

t
L dt+DLFL(Φt)DvΦ

t
L dt+QL(Φt)2(V t

L )∗ dt
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+DLQL(Φt) DvΦ
t
L dWL(t) .

This expression will be written in the short form

dΨt = −ÃΨt dt+ F̃ (Ψt) dt+ Q̃(Ψt) dW (t) ,

with Ψt ∈ H̃ anddW (t) the cylindrical Wiener process onH. It can easily be verified that this
equation satisfies assumptionA1 of Proposition 6.1. We consider again the stochastic process
vt ∈ H defined in (6.10). It is clear from Lemma 6.5 thatvt satisfiesA2. With this particular
choice ofv, the first component ofDvΨ

t (the one inH) is equal toDvΦ
t
L ⊕ 0.

We choose a functionϕ ∈ C2
b (H) and fix two indicesi, k ∈ {0, . . . , L − 1}. Defineϕ̃i,k :

H̃ → R by

ϕ̃i,k(Ψt) =
L−1∑
j=0

ϕ(Φt)((DvΦ
t
L)−1)i,j(DLΦ

t
L)j,k ,

where the inverse has to be understood as the inverse of a square matrix. By Theorem 7.1,ϕ̃i,k

satisfies the assumptions of Proposition 6.1. A simple computation gives for everyh ∈ RL the
identity:

Dϕ̃i,k(Ψt)DvΨ
th = DLϕ(Φt)(DvΦ

t
Lh)((DvΦ

t
L)−1)i,j(DLΦ

t
L)j,k

+ ϕ(Φt)((DvΦ
t
L)−1(D2

v Φt
Lh)(DvΦ

t
L)−1)i,j(DLΦ

t
L)j,k

+ ϕ(Φt)((DvDLΦ
t
L)h)i,j((DvΦ

t
L)−1)j,k , (7.10)

where summation overj is implicit. We now apply the integration by parts formula in the form
of Proposition 6.1. This gives the identity

E(Dϕ̃i,k(Ψt)DvΨ
th) = E

(
ϕ̃i,k(Ψt)

∫ t

0
〈vsh, dW (s)〉

)
.

Substituting (7.10), we find

E
(
DLϕ(Φt)(DvΦ

t
Lh)((DvΦ

t
L)−1)i,j(DLΦ

t
L)j,k

)
=

− E
(
ϕ(Φt)((DvΦ

t
L)−1(D2

v Φt
Lh)(DvΦ

t
L)−1)i,j(DLΦ

t
L)j,k

)
− E

(
ϕ(Φt)((DvDLΦ

t
L)h)i,j((DvΦ

t
L)−1)j,k

)
+ E

(
ϕ(Φt)((DvΦ

t
L)−1)i,j(DLΦ

t
L)j,k

∫ t

0
〈vsh, dW (s)〉

)
.

The summation over the indexj is implicit in every term. We now chooseh = ei and sum over
the indexi. The left-hand side is then equal to

E
(
(DLϕ(Φt))DLΦ

t
Lek

)
,

which is precisely the expression we want to bound. The right-hand side can be bounded in
terms of‖ϕ‖L∞ and ofE((DvΦ

t
L)−4) (at worst). The other factors are all given by components

of DvΨ
t and can therefore be bounded by means of Theorem 8.9. Therefore, (7.9) follows. The

proof of Proposition 7.12 is complete.
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8 Existence Theorems

In this section, we prove existence theorems for several PDE’s and SDE’s, in particular we prove
Proposition 5.1 and Lemma 5.4. Much of the material here relies on well-known techniques,
but we include the details for completeness.

We consider again the problem

dΦt = −AΦt dt+ F (Φt) dt+Q(Φt) dW (t) , (8.1)

with Φ0 = ξ given. The initial conditionξ will be taken in one of the Hilbert spacesHγ. We
will show that, after some time, the solution lies in some smaller Hilbert space. Note that we
are working here with thecutoffequations, but we omit the index%.

We will of course require that all stochastic processes are predictable. This means that if we
write Lp(Ω,Y ), with Y some Banach space of functions of the interval [0, T ], we really mean
that the only functions we consider are those that are measurable with respect to the predictable
σ-field when considered as functions overΩ× [0, T ].

We first state precisely what is known about the ingredients of (8.1).

Lemma 8.1 The following properties hold forA, F andQ.

P1 The spaceH is a real separable Hilbert space andA : D(A) → H is a self-adjoint
strictly positive operator.

P2 The mapF : H → H has bounded derivatives of all orders.

P3 For everyγ ≥ 0, F mapsHγ into itself. Furthermore, there exists a constantn > 0
independent ofγ and constantsCF,γ such thatF satisfies the bounds

‖F (x)‖γ ≤ CF,γ(1 + ‖x‖γ) , (8.2a)

‖F (x)− F (y)‖γ ≤ CF,γ‖x− y‖γ(1 + ‖x‖γ + ‖y‖γ)
n , (8.2b)

for all x andy in Hγ.

P4 There exists anα > 0 such that for everyx, x1, x2 ∈ H the mapQ : H → L (H,H)
satisfies

‖Aα−3/8Q(x)‖HS ≤ C , ‖Aα−3/8(Q(x1)−Q(x2))‖HS ≤ C‖x1 − x2‖ ,

where‖ · ‖HS denotes the Hilbert-Schmidt norm inH.

P5 The derivative ofQ satisfies

‖Aα(DQ(x))h‖HS ≤ C‖h‖ , (8.3)

for everyx, h ∈ H.

P6 The derivative ofF satisfies

‖(DF (x))y‖γ ≤ C(1 + ‖x‖γ)‖y‖γ ,

for everyx, y ∈ Hγ.



UNIQUENESS OF THEINVARIANT MEASURE 67

Proof. The pointsP1, P2 are obvious. The pointP4 follows from the definition (1.6) ofQ and
the construction ofQ% in (4.1). To proveP3, recall that the mapF = F% of the GL equation is
of the type

F%(u) = χ(‖u‖/(3%))P (u) ,

with P some polynomial andχ ∈ C∞0 (R). The key point is to notice that the estimate

‖uv‖γ ≤ Cγ(‖u‖ ‖v‖γ + ‖u‖γ‖v‖)

holds for everyγ ≥ 0, whereuv denotes the multiplication of two functions. In particular, we
have

‖un‖γ ≤ C‖u‖γ‖u‖n−1 ,

which, together with the fact thatχ has compact support, shows (8.2a). This also shows that the
derivatives ofF in Hγ are polynomially bounded and so (8.2b) holds.P6 follows by the same
argument.

The pointP5 immediately follows from the fact that the image of the operator(DQ(x))h is
contained inHL for everyx, h ∈ H.

Remark 8.2 The conditionP1 implies thate−At is an analytic semigroup of contraction oper-
ators onH. We will use repeatedly the bound

‖e−Atx‖γ ≤ Cγt
−γ‖x‖ .

We begin the study of (8.1) by considering the equation for the mild solution

Ψ(t, ξ, ω) = e−Atξ +
∫ t

0
e−A(t−s)F (Ψ(s, ξ, ω)) ds

+
∫ t

0
e−A(t−s)Q(Ψ(s, ξ, ω)) dW (s, ω) .

(8.4)

The study of this equation is in several steps. We will consider first the noise term, then the
equation for a fixed instance ofω, and finally prove existence and bounds.

We need some more notation:

Definition 8.3 Let Hα be as above the domain ofAα with the graph norm. We fix, once and
for all, a maximal timeT . We denote byHα

T the spaceC([0, T ],Hα) equipped with the norm

‖y‖Hα
T

= sup
t∈[0,T ]

‖y(t)‖α .

We writeHT instead ofH0
T .

8.1 The noise term

Let y ∈ Lp(Ω,HT ). (One should think ofy as beingy(t) = Φt.) The noise term in (8.4) will be
studied as a function on Lp(Ω,HT ). It is given by the functionZ defined as

(Z(y))(ω) = t 7→
∫ t

0
e−A(t−s)Q(y(ω)(s)) dW (s, ω) . (8.5)
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We will show thatZ(y) is in Lp(Ω,Hα
T ) wheny is in Lp(Ω,HT ). The natural norm here is the

Lp norm defined by

|||Z(y)|||Hα
T ,p =

(
Eω sup

t∈[0,T ]
‖(Z(y))t(ω)‖p

α

)1/p

.

Proposition 8.4 LetH, A andQ be as above and assumeP1 andP4 are satisfied. Then, for
everyp ≥ 1 and everyT < T0 one has

|||Z(y)|||Hα
T ,p ≤ CT0T

p/16 . (8.6)

Proof. Choose an elementy ∈ Lp(Ω,HT ). In the sequel, we will considery as a function over
[0, T ] × Ω and we will not write explicitly the dependence onΩ.

In order to get bounds onZ, we use the factorization formula and the Young inequality.
Chooseγ ∈ (1/p, 1/8). The factorization formula [DPZ92b] then gives the equality

(Z(y))(t) = C
∫ t

0
(t− s)γ−1e−A(t−s)

∫ s

0
(s− r)−γe−A(s−r)Q(y(r)) dW (r) ds .

SinceA commutes withe−At, the Ḧolder inequality leads to

‖(Z(y))(t)‖p
α (8.7)

= C
∥∥∥∫ t

0
(t− s)γ−1e−A(t−s)

∫ s

0
(s− r)−γAαe−A(s−r)Q(y(r)) dW (r) ds

∥∥∥p

≤ Ctν
∫ t

0

∥∥∥∫ s

0
(s− r)−γAαe−A(s−r)Q(y(r)) dW (r)

∥∥∥p
ds ,

with ν = (pγ − 1)/(p− 1). For the next bound we need the following result:

Lemma 8.5 [DPZ92b, Thm. 7.2]. Letr 7→ Ψr be an arbitrary predictableL 2(H)-valued
process. Then, for everyp ≥ 2, there exists a constantC such that

E
(∥∥∥∫ s

0
Ψr dW (r)

∥∥∥p)
≤ CE

(∫ s

0
‖Ψr‖2

HSdr
)p/2

.

This lemma, the Young inequality applied to (8.7), andP4above imply

|||Z(y)|||pHα
T ,p = E

(
sup

0≤t≤T

∥∥∥∫ t

0
Aαe−A(t−s)Q(y(s)) dW (s)

∥∥∥p)
≤ CT νE

∫ T

0

∥∥∥∫ s

0
(s− r)−γAαe−A(s−r)Q(y(r)) dW (r)

∥∥∥p
ds

≤ CT νE
∫ T

0

(∫ s

0
(s− r)−2γ‖Aαe−A(s−r)Q(y(r))‖2

HSdr
)p/2

ds

≤ CT νE
∫ T

0

(∫ s

0
(s− r)−2γ‖A3/8e−A(s−r)‖2‖Aα−3/8Q(y(r))‖2

HSdr
)p/2

ds

≤ CT νE
∫ T

0

(∫ s

0
(s− r)−2γ−3/4‖Aα−3/8Q(y(r))‖2

HSdr
)p/2

ds
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≤ CT ν
(∫ T

0
s−2γ−3/4 ds

)p/2
E
∫ T

0
‖Aα−3/8Q(y(s))‖p

HSds

≤ CT 1+ν
(∫ T

0
s−2γ−3/4 ds

)p/2
, (8.8)

providedγ < 1/8. We chooseγ = 1/16 (which thus imposes the conditionp > 16), and we
find

|||Z(y)|||pHα
T ,p ≤ CT 1+ν

0 T p/16 .

Thus, we have shown (8.6) forp > 16. Since we are working in a probability space the case of
p ≥ 1 follows. This completes the proof of Proposition 8.4.

8.2 A deterministic problem

The next step in our study of (8.4) is the analysis of the problem for afixedinstance of the noise
ω. Then (8.4) is of the form

h(t, ξ, z) = e−Atξ +
∫ t

0
e−A(t−s)F (h(s, ξ, z)) ds+ z(t) ,

where we assume thatz ∈ Hα
T . One should think of this as an instance ofZ(Φ), but at this point

of our proof, the necessary bounds are not yet available.
We find it more convenient to study instead ofh the quantityg defined byg(t, ξ, z) =

h(t, ξ, z)− z(t). Theng satisfies

g(t, ξ, z) = e−Atξ +
∫ t

0
e−A(t−s)F (g(s, ξ, z) + z(s)) ds . (8.9)

We consider the solution (assuming it exists) as a map from the initial conditionξ and the
deterministic noise termz. More precisely, we define

G(ξ, z)t = g(t, ξ, z) .

This is a map defined onH×Hα
T . Clearly, (8.9) reads:

G(ξ, z)t = e−Atξ +
∫ t

0
e−A(t−s)F (G(ξ, z)s + z(s)) ds . (8.10)

To formulate the bounds onG, we need some more spaces that take into account the regu-
larizing effect of the semigroupt 7→ e−At.

Definition 8.6 For γ ≥ 0 the spacesGγ
T are defined as the closures ofC([0, T ],Hγ) under the

norm
‖y‖Gγ

T
= sup

t∈(0,T ]
tγ‖y(t)‖γ + sup

t∈[0,T ]
‖y(t)‖ .

Note that
‖y‖Gγ

T
≤ Cγ,T‖y‖Hγ

T
.

With these definitions, one has:
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Proposition 8.7 Assume the conditionsP1–P4are satisfied. Assumeξ ∈ H andz ∈ Hα
T . Then,

there exists a mapG : H×Hα
T → HT solving (8.10). One has the following bounds:

(A) If ξ ∈ Hγ with γ ≤ α one has for everyT > 0 the bound

‖G(ξ, z)‖Hγ
T
≤ CT (1 + ‖ξ‖γ + ‖z‖Hγ

T
) . (8.11)

(B) If ξ ∈ H one has for everyT > 0 the bound

‖G(ξ, z)‖Gα
T
≤ CT (1 + ‖ξ‖ + ‖z‖Hα

T
) . (8.12)

Before we start with the proof proper we note the following regularizing bound: Define

(N f)(t) =
∫ t

0
e−A(t−s)f (s) ds . (8.13)

Then one has:

Lemma 8.8 For everyε ∈ [0, 1) and everyγ > ε there is a constantCε,γ such that

‖N f‖Gγ
T
≤ Cε,γT‖f‖Gγ−ε

T
,

for all f ∈ Gγ−ε
T .

Proof. We start with

‖(N f)(t)‖γ ≤
∫ t/2

0
‖Aγe−A(t−s)f (s)‖ ds+

∫ t

t/2
‖Aεe−A(t−s)Aγ−εf (s)‖ ds

≤
∫ t/2

0
(t− s)−γ‖f (s)‖ ds+

∫ t

t/2
(t− s)−ε‖f (s)‖γ−ε ds

≤
∫ t/2

0
(t− s)−γ‖f‖Gγ−ε

T
ds+

∫ t

t/2
(t− s)−εsε−γ‖f‖Gγ−ε

T
ds

≤ Ct1−γ‖f‖Gγ−ε
T

+ Ct1−εtε−γ‖f‖Gγ−ε
T

.

Therefore,tγ‖(N f)(t)‖γ ≤ CT‖f‖Gγ−ε
T

. Similarly, we have

‖(N f)(t)‖ ≤
∫ t

0
‖e−A(t−s)f (s)‖ ds ≤ Ct‖f‖Gγ−ε

T
.

Combining the two inequalities, the result follows.

Proof of Proposition 8.7.We first choose an initial conditionξ ∈ Hγ and a functionz ∈ Hγ
T .

The local existence of the solutions inHγ is a well-known result. Thus there exists, for a
possibly small timẽT > 0, a functionu ∈ C([0, T̃ ],Hγ) satisfying

u(t) = e−Atξ +
∫ t

0
e−A(t−s)F (u(s) + z(s)) ds .
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In order to get ana priori bound on‖u(t)‖γ we use assumptionP3and find

‖u(t)‖γ ≤ ‖ξ‖γ + CF,γ

∫ t

0
(1 + ‖u(s) + z(s)‖γ) ds

≤ C(1 + ‖ξ‖γ + ‖z‖Hγ
T
) + CF,γ

∫ t

0
‖u(s)‖γ ds .

By Gronwall’s lemma we get fort < T ,

‖u(t)‖γ ≤ CT (1 + ‖ξ‖γ + ‖z‖Hγ
T
) . (8.14)

Note that (8.14) tells us that if the initial conditionξ is in Hγ and if z is in Hγ
T , thenu(t)

is, for small enought, again inHγ with the above bound. Therefore, we can iterate the above
reasoning and show the global existence of the solutions up to timeT , with bounds. Thus,G is
well-defined and satisfies the bound (8.11).

We turn to the proof of the estimate (8.12). Define forz ∈ HT the mapMz by

(Mz(x))(t) = e−Atξ +
∫ t

0
e−A(t−s)F (x(s) + z(s)) ds . (8.15)

Taking ξ ∈ H we see from (8.14) withγ = 0 that there exists a fixed pointu of Mz which
satisfies

‖u‖HT
= sup

t∈[0,T ]
‖u(t)‖ ≤ CT (1 + ‖ξ‖ + ‖z‖HT

) .

Assume next thatz ∈ Hα
T and hencea fortiori z ∈ Gα

T . Then, byP3one has

‖F (x+ z)‖Gγ
T
≤ C(1 + ‖x‖Gγ

T
+ ‖z‖Gγ

T
) .

Sinceu is a fixed point and (8.15) contains a term of the form of (8.13) we can apply Lemma 8.8
and obtain for everyγ ≤ α andε ∈ [0, 1):

‖u‖Gγ+ε
T

= ‖Mz(u)‖Gγ+ε
T

≤ C‖ξ‖ + CT‖F (u+ z)‖Gγ
T

≤ C‖ξ‖ + CT (1 + ‖u‖Gγ
T

+ ‖z‖Gγ
T
) . (8.16)

Thus, as long as‖z‖Gγ
T

is finite, we can apply repeatedly (8.16) until reachingγ = α, and this
proves (8.12). The proof of Proposition 8.7 is complete.

8.3 Stochastic differential equations in Hilbert spaces

Before we can start with the final steps of the proof of Proposition 5.1 we state in the next
subsection a general existence theorem for stochastic differential equations in Hilbert spaces.
The symbolH denotes a separable Hilbert space. We are interested in solutions to the SDE

dX t = (−AX t +N (t, ω,X t) +M t) dt+B(t, ω,X t) dW (t) , (8.17)

whereW (t) is the cylindrical Wiener process on a separable Hilbert spaceH0. We assume
B(t, ω,X t) : H0 → H is Hilbert-Schmidt. We will denote byΩ the underlying probability
space and by{Ft}t≥0 the associated filtration.

The exact conditions spell out as follows:



72 UNIQUENESS OF THEINVARIANT MEASURE

C1 The operatorA : D(A) → H is the generator of a strongly continuous semigroup inH.

C2 There exists a constantC > 0 such that for arbitraryx, y ∈ H, t ≥ 0 andω ∈ Ω the
estimates

‖N (t, ω, x)−N (t, ω, y)‖ + ‖B(t, ω, x)−B(t, ω, y)‖HS ≤ C‖x− y‖ ,

‖N (t, ω, x)‖2 + ‖B(t, ω, x)‖2
HS ≤ C2(1 + ‖x‖2) ,

hold.

C3 For everyx, h ∈ H andh0 ∈ H0, the stochastic processes〈N (·, ·, x), h〉 and〈B(·, ·, x)h0, h〉
are predictable.

C4 TheH-valued stochastic processM t is predictable, has continuous sample paths, and
satisfies

sup
t∈[0,T ]

E ‖M t‖p <∞ ,

for everyT > 0 and everyp ≥ 1.

C5 For arbitraryt > 0 andω ∈ Ω, the mapsx 7→ N (t, ω, x) andx 7→ B(t, ω, x) are twice
continuously differentiable with their derivatives bounded by a constant independent of
t, x andω.

We have the following existence theorem.

Theorem 8.9 Assume thatξ ∈ H and thatC1 – C4 are satisfied.

– For anyT > 0, there exists a mild solutionX t
ξ of (8.17) withX0

ξ = ξ. This solution is
unique among theH-valued processes satisfying

P

(∫ T

0
‖X t

ξ‖
2 dt <∞

)
= 1 .

Furthermore,Xξ has a continuous version and is strongly Markov.

– For everyp ≥ 1 andT > 0, there exists a constantCp,T such that

E( sup
t∈[0,T ]

‖X t
ξ‖

p) ≤ Cp,T (1 + ‖ξ‖p) . (8.18)

– If, in addition,C5 is satisfied, the mappingξ 7→ X t
ξ(ω) has a.s. bounded partial deriva-

tives with respect to the initial conditionξ. These derivatives satisfy the SDE’s obtained
by formally differentiating (8.17) with respect toX.

Proof. The proof of this theorem for the caseM t ≡ 0 can be found in [DPZ96]. The same
proof carries through for the case of non-vanishingM t satisfyingC4.

8.4 Bounds on the cutoff dynamics (Proof of Proposition 5.1)

With the tools from stochastic analysis in place, we can now prove Proposition 5.1. We start
with the
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Proof of (A). In this case we identify the equation (8.17) with (4.2) and apply Theorem 8.9.
The conditionC1 of Theorem 8.9 is obviously true, and the conditionC3 is redundant in this
case. The conditionC2 is satisfied becauseF andQ of (8.17) satisfyP2–P4. Therefore, (8.18)
holds and hence we have shown (5.1a) for the case ofγ = 0. In particular,Φt

% exists and satisfies

Φt
%(ξ, ω) = e−Atξ +

∫ t

0
e−A(t−s)F (Φs

%(ξ, ω)) ds

+
∫ t

0
e−A(t−s)Q(Φs

%(ξ, ω)) dW (s) .
(8.19)

We can extend (5.1a) to arbitraryγ ≤ α as follows. We set as in (8.5),

(Z(Φ%))t(ω) =
∫ t

0
e−A(t−s)Q(Φs

%(ξ, ω)) dW (s) . (8.20)

By Proposition 8.4, we find that for allp ≥ 1 one has(
Eω sup

t∈[0,T ]
‖(Z(Φ%))t(ω)‖p

α

)1/p

< CT,p (8.21)

for all ξ. From this, we conclude that, almost surely,

sup
t∈[0,T ]

‖(Z(Φ%))t(ω)‖α <∞ . (8.22)

Subtracting (8.20) from (8.19) we get

Φt
%(ξ, ω)− (Z(Φ%))t(ω) = e−Atξ +

∫ t

0
e−A(t−s)F (Φs

%(ξ, ω)) ds

= e−Atξ +
∫ t

0
e−A(t−s)F

(
Φs

%(ξ, ω)− (Z(Φ%))s(ω) + (Z(Φ%))s(ω)
)
ds .

(8.23)

Comparing (8.23) with (8.10) we see that, a.s.,

Φt
%(ξ, ω)− (Z(Φ%))t(ω) = G(ξ, Z(Φ%(ξ, ·))(ω)) .

We now usez as a shorthand:

z(t) =
(
Z(Φ%(ξ, ·))

)
t
(ω) .

Assume nowξ ∈ Hγ. Note that by (8.22),z(t) is inHα. If γ ≤ α, we can apply Proposition 8.7
and from (8.11) we conclude that almost surely,

sup
t∈[0,T ]

‖G(ξ, z)‖γ ≤ CT (1 + ‖ξ‖γ + sup
t∈[0,T ]

‖z‖γ) .

Finally, sinceγ ≤ α, we find

E
(

sup
t∈[0,T ]

‖Φt
%(ξ)‖p

γ

)
≤ CE

(
sup

t∈[0,T ]
‖G(ξ, z)t‖p

γ

)
+ CE

(
sup

t∈[0,T ]
‖z(t)‖p

γ

)
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≤ CT,p(1 + ‖ξ‖γ)p + CE
(

sup
t∈[0,T ]

‖z(t)‖p
γ

)
≤ CT,p(1 + ‖ξ‖γ)p , (8.24)

where we applied (8.21) to get the last inequality. Thus, we have shown (5.1a) for allγ ≤ α.
The fact that the solution is strong ifγ ≥ 1 is an immediate consequence of [Lun95, Lemma
4.1.6] and [DPZ92b, Thm. 5.29].

Proof of (B). This bound can be shown in a similar way, using the bound (8.12) of Proposi-
tion 8.7: Takeξ ∈ H. By the above, we know that there exists a solution to (8.19) satisfying the
bound (5.1b) withγ = 0. We definez(t) andG(ξ, z)t as above. But now we apply the bound
(8.12) of Proposition 8.7 and we conclude that almost surely,

sup
t∈[0,T ]

tα‖G(ξ, z)‖α ≤ CT (1 + ‖ξ‖ + sup
t∈[0,T ]

‖z‖α) .

Following a procedure similar to (8.24), we conclude that (5.1b) holds.

Proof of (C). The existence of the partial derivatives follows from Theorem 8.9. To show the
bound, chooseξ ∈ H andh ∈ H with ‖h‖ = 1, and define the processΨt = (DΦt

%(ξ))h. It is
by Theorem 8.9 a mild solution to the equation

dΨt = −AΨt dt+
(
(DF ◦ Φt

%)(ξ)Ψ
t
)
dt+

(
(DQ ◦ Φt

%)(ξ)Ψ
t
)
dW (t) . (8.25)

By P3 andP5, this equation satisfies conditionsC1–C3 of Theorem 8.9, so we can apply it to
get the desired bound (5.1c). (The constant term drops since the problem is linear inh.)

Proof of (D). Chooseh ∈ H andξ ∈ Hα and define as aboveΨt = (DΦt
%(ξ))h, which is the

mild solution to (8.25) with initial conditionh. We write this as

Ψt = e−Ath+
∫ t

0
e−A(t−s)

(
(DF ◦ Φs

%)(ξ)Ψ
s
)
ds

+
∫ t

0
e−A(t−s)

(
(DQ ◦ Φs

%)(ξ)Ψ
s
)
dW (s)

≡ St
1 + St

2 + St
3 .

The termSt
1 satisfies

sup
t∈(0,T ]

tα‖St
1‖α ≤ CT‖h‖ . (8.26)

The termSt
3 is very similar to what is found in (8.5), withQ(y(s)) replaced by (DQ ◦ Φs

%)Ψs.
Repeating the steps of (8.8) for a sufficiently largep, we obtain now withγ = 1

4
, someµ > 0

and writingXs = (DQ ◦ Φs
%)(ξ)Ψ

s:

E sup
t∈[0,T ]

‖St
3‖p

α = E
(

sup
0≤t≤T

∥∥∥∫ t

0
Aαe−A(t−s)Xs dW (s)

∥∥∥p)
≤ CT µE

∫ T

0

∥∥∥∫ s

0
(s− r)−γAαe−A(s−r)Xr dW (r)

∥∥∥p
ds
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≤ CT µE
∫ T

0

(∫ s

0
(s− r)−2γ‖Aαe−A(s−r)Xr‖2

HSdr
)p/2

ds

≤ CT µE
∫ T

0

(∫ s

0
(s− r)−2γ‖AαXr‖2

HSdr
)p/2

ds

≤ CT µ
(∫ T

0
s−2γ ds

)p/2
E
∫ T

0
‖AαXs‖p

HSds

≤ CT µ+p/4E
∫ T

0
‖Aα(DQ ◦ Φs

%)(ξ)Ψ
s‖p

HSds .

We now useP5, i.e., (8.3) and then (5.1c) and get

E sup
t∈[0,T ]

‖St
3‖p

α ≤ CT µ+p/4E
∫ T

0
‖Ψs‖p ds ≤ CT µ+p/4+1‖h‖p . (8.27)

To treat the termSt
2, we fix a realizationω ∈ Ω of the noise and use Lemma 8.8. This gives

for ε ∈ [0, 1) the bound

sup
t∈(0,T ]

tγ‖St
2‖γ ≤ CT sup

t∈(0,T ]
tγ−ε‖(DF ◦ Φt

%)(ξ)Ψ
t‖γ−ε .

By P6, this leads to the bound, a.s.,

sup
t∈(0,T ]

tγ‖St
2‖γ ≤ CT

(
1 + sup

t∈(0,T ]
‖Φt

%(ξ)‖γ−ε

)
sup

t∈(0,T ]
tγ−ε‖Ψt‖γ−ε .

Taking expectations we have

E sup
t∈(0,T ]

tγp‖St
2‖p

γ ≤ Cp
T E

((
1 + sup

t∈(0,T ]
‖Φt

%(ξ)‖γ−ε

)p
sup

t∈(0,T ]
t(γ−ε)p‖Ψt‖p

γ−ε

)
.

By the Schwarz inequality and (5.1a) we get

E sup
t∈(0,T ]

tγp‖St
2‖p

γ ≤ CT,p(1 + ‖ξ‖p
γ−ε)

(
E sup

t∈(0,T ]
t(γ−ε)2p‖Ψt‖2p

γ−ε

)1/2
. (8.28)

SinceΨt = (DΦt
%(ξ))h = St

1 + St
2 + St

3, combining (8.26)–(8.28) leads to

E sup
t∈(0,T ]

tγp‖(DΦt
%(ξ))h‖p

γ

≤ CT,p‖h‖p + CT,p(1 + ‖ξ‖p
γ−ε)

(
E sup

t∈(0,T ]
t(γ−ε)2p‖(DΦt

%(ξ))h‖2p
γ−ε

)1/2
.

Thus, we have gainedε in regularity. Choosingε = 1
2

and iterating sufficiently many times we
obtain (5.1d) for sufficiently largep. The general case then follows from the Hölder inequality.

Proof of (E). We estimate this expression by

‖Φt
%(ξ)− e−Atξ‖γ ≤

∫ t

0
‖F (Φs

%(ξ))‖γ ds+
∥∥∥∥∫ t

0
e−A(t−s)Q(Φs

%(ξ)) dW (s)
∥∥∥∥

γ
.

The first term can be bounded by combining (5.1b) andP3. The second term is bounded by
Proposition 8.4.

The proof Proposition 5.1 is complete.
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8.5 Bounds on the off-diagonal terms

Here, we prove Lemma 5.4. This is very similar to the proof of (D) of Proposition 5.1.

Proof. We fix T > 0 andp ≥ 1. We start with (5.5b). Recall that here we do not write the
cutoff %. We chooseh ∈ HH andξ ∈ H. The equation forΨs = (DHΦs

L(ξ))h is :

Ψs =
∫ s

0
e−A(s−s′)

(
(DFL ◦ Φs′

% )(ξ)(DHΦs′(ξ))h
)
ds′

+
∫ s

0
e−A(s−s′)

(
(DQL ◦ Φs′

% )(ξ)(DHΦs′(ξ))h
)
dW (s′)

≡ Rs
1 +Rs

2 .

SinceDF = DF% is bounded we get

‖Rs
1‖ ≤ C

∫ s

0
‖(DHΦs′(ξ))h‖ ds′ ≤ Cs sup

s′∈[0,s]
‖(DHΦs′(ξ))h‖ .

Using (5.1c), this leads to

E sup
s∈[0,t]

‖Rs
1‖

p ≤ CptpE sup
s∈[0,t]

‖(DHΦs(ξ))h‖p ≤ CT,pt
p‖h‖p .

The termRs
2 is bounded exactly as in (8.27). Combining the bounds, (5.5b) follows.

SinceQH is constant, see (4.1), we get forΨs = (DLΦ
s
H(ξ))h andh ∈ HL:

Ψs =
∫ s

0
e−A(s−s′)

(
(DFH ◦ Φs′

% )(ξ)(DLΦ
s′(ξ))h

)
ds′ .

This is bounded likeRs
1 and leads to (5.5a). This completes the proof of Lemma 5.4.

8.6 Proof of Proposition 2.3

Here we point out where to find the general results on (1.7) which we stated in Proposition 2.3.
Note that these are bounds on the flowwithoutcutoff %.

Proof of Proposition 2.3.There are many ways to prove this. To make things simple, without
getting the best estimate possible, we note that a bound in L∞ can be found in [Cer99, Prop. 3.2].
To get from L∞ toH, we note thatξ ∈ H and we use (1.7) in its integral form. The terme−Atξ
is bounded inH, while the non-linear term

∫ t
0 e

−A(t−s)F (Φs(ξ)) ds can be bounded by using a
version of Lemma 8.8. Finally, the noise term is bounded by Proposition 8.4.

Furthermore, because of the compactness of the semigroup generated byA, it is possible to
show [DPZ96, Thm. 6.3.5] that an invariant measure exists.
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IV. Exponential Mixing for a Stochastic PDE
Driven by Degenerate Noise

Abstract

We study stochastic partial differential equations of the reaction-diffusion type. We show that,
even if the forcing is very degenerate (i.e.has not full rank), one has exponential convergence
towards the invariant measure. The convergence takes place in the topology induced by a
weighted variation norm and uses a kind of (uniform) Doeblin condition.

1 Model and Result

We consider the stochastic partial differential equation given by

du = ∂2
ξu dt− P(u) dt+QdW (t) , u ∈ W (1,2)

per ([0, 1]) . (SGL)

In this equation,P is a polynomial of odd degree with positive leading coefficient and degP ≥ 3,
dW is the cylindrical Wiener process onH ≡ W (1,2)

per ([0, 1]), andQ : H → H is a compact
operator which is diagonal in the trigonometric basis. The symbolξ ∈ [0, 1] denotes the spatial
variable. Further conditions on the spectrum ofQ will be made precise below.

In a recent paper [EH01b], to which we also refer for further details about the model, it was
shown that this equation possesses a unique invariant measure and satisfies the Strong Feller
property. However, the question of the rate of convergence towards the invariant measure was
left open. The aim of this paper is to show that this rate is exponential.

There is a fair amount of very recent literature about closely related questions, mainly con-
cerning ergodic properties of the 2D Navier-Stokes equation. To the author’s knowledge, the
main results are exposed in the works of Kuksin and Shirikyan [KS00, KS01], Bricmont, Kupi-
ainen and Lefevere [BKL00c, BKL00b], and E, Mattingly and Sinai [EMS01, Mat01], although
the problem goes back to Flandoli and Maslowski [FM95]. The main differences between the
model exposed here and the above papers is that we want to consider a situation where theunsta-
blemodes arenot forced, whereas the forcing only acts onto the stable modes and is transmitted
to the whole system through the nonlinearity. From this point of view, we are in a hypoelliptic
situation where Ḧormander-type conditions apply [Hör67, Ḧor85], as opposed to the essentially
elliptic situation where the unstable modes are all forced and the (infinitely many) other modes
are stabilized by the linear part of the equation.

Returning to the model (SGL), we denote byqk the eigenvalue ofQ corresponding to thekth
trigonometric function (ordered in such a way thatk > 0). We make the following assumption
on theqk:

Assumption 1.1 There exist constantsk∗ > 0, C1 > 0, C2 > 0, α ≥ 2 andβ ∈ (α − 1/8, α]
such that

C1k
−2α ≤ qk ≤ C2k

−2β , for k > k∗. (1.1)

There are no assumptions onqk for k ≤ k∗, in particular one may haveqk = 0 in that region.
Furthermore,k∗ can be chosen arbitrarily large.
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We denote byΦt(u) the solution of (SGL) at timet with initial conditionu ∈ H. If Φt exists
and is sufficiently regular, one can define the semigroupP t acting on bounded functionsϕ and
the semigroupP t

∗ acting on finite measuresµ by

(P tϕ)(u) = E
(
(ϕ ◦ Φt)(u)

)
, (P t

∗µ)(A) = E
(
(µ ◦ Φ−1

t )(A)
)
.

In a recent paper [EH01b], to which we also refer for further details about the model, it was
shown that the above model satisfies the following.

Theorem 1.2 Under Assumption 1.1, the solution of (SGL) defines a unique stochastic flow
Φt onH, thus also defining a Markov semigroupP t. The semigroupP t is Strong Feller and
open set irreducible in arbitrarily short time. As a consequence, the semigroupP t

∗ acting on
measures possesses a unique invariant measure onH.

Recall that a semigroup is said “open set irreducible in arbitrarily short time” if the proba-
bility of reaching a given open set in a given time is always strictly positive.

We denote byµ∗ the unique invariant probability measure of Theorem 1.2. We will show in
this paper that for every probability measureµ, we haveP t

∗µ → µ∗ and that this convergence
takes place with an exponential rate (in time). More precisely, we introduce, for a given (pos-
sibly unbounded) Borel functionV : H → [1,∞], the weighted variational normdefined on
every signed Borel measureµ by

|||µ|||V ≡
∫
H
V (x)µ+(dx) +

∫
H
V (x)µ−(dx) ,

whereµ± denotes the positive (resp. negative) part ofµ. WhenV (x) = 1, we recover the usual
variational norm which we denote by||| · |||. We also introduce the family of norms‖ · ‖γ onH
defined by

‖x‖γ = ‖Lγx‖ ,

whereL is the differential operator1− ∂2
ξ and‖ · ‖ is the usual norm onH, i.e.

‖u‖2 =
∫ 1

0
(|u|2 + |∂ξu|2) dξ .

The exact formulation of our convergence result is

Theorem 1.3 There exists a constantλ > 0 such that for everyp ≥ 1, everyγ ≤ α, and every
probability measureµ onH, one has

|||P t
∗µ− µ∗|||Vγ,p ≤ Ce−λt , with Vγ,p(u) = ‖u‖p

γ + 1 ,

for everyt ≥ 1. The constantC is independent of the probability measureµ.

In the sequel, we will denote byΦ the Markov chain obtained by sampling the solution of
(SGL) at integer times and byP(x, · ) the corresponding transition probabilities. Theorem 1.3
is a consequence of the following features of the model (SGL).
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A. We construct a setK having the property that there exists a probability measureν and a
constantδ > 0 such thatP(x, · ) ≥ δ ν( · ) for everyx ∈ K. This means thatK behaves
“almost” like an atom for the Markov chainΦ. This is shown to be a consequence of
the Strong Feller property and the irreducibility of the Markov semigroup associated to
(SGL).

B. The dynamics has very strong contraction properties in the sense that it reaches some
compact set very quickly. In particular, one can bound uniformly from below the transi-
tion probabilities to a setK satisfying propertyA.

These conditions yield some strong Doeblin condition and thus lead to exponential conver-
gence results. The intuitive reason behind this is that, for any two initial measures, their image
underP∗ has a common part, the amount of which can be bounded uniformly from below and
cancels out. This will be clarified in the proof of Proposition 2.1 below.

The remainder of the paper is organized as follows. In Section 2, we show how to obtain
Theorem 1.3 from the above properties. The proof will be strongly reminiscent of the standard
proof of the Perron-Frobenius theorem. In Section 3 we then show the contraction properties of
the dynamics and in Section 4 we show that every compact set has the propertyA.
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2 A Variant of the Perron-Frobenius Theorem

The following proposition shows, reformulated in a more rigorous way, why the propertiesA.
andB. yield exponential convergence results towards the invariant measure.

Proposition 2.1 Let Ψ be a Markov chain on a measurable spaceX and letΨ satisfy the fol-
lowing properties:

a. There exist a measurable setK, a positive constantδ and a probability measureν∗ such
that for every measurable setA and everyx ∈ K, one hasP(x,A) ≥ δ ν∗(A).

b. There exists a constantδ′ > 0 such thatP(x,K) ≥ δ′ for everyx ∈ X.

ThenΨ has a unique invariant measureµ∗ and one has for every probability measureµ the
estimate|||Pn

∗ µ− µ∗||| ≤ 2(1− δδ′)−n/2.

Proof. The first observation we make is that for every probability measureµ one has by property
a.,

(P∗µ)(K) =
∫
X
P(x,K)µ(dx) ≥ δ′ .

As a consequence of this and of propertyb., one has for every measurable setA the bound

(P2
∗µ)(A) ≥

∫
K
P(x,A) (P∗µ)(dx) ≥ δδ′ν∗(A) . (2.1)
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Define the constantε = δδ′. An immediate consequence of (2.1) is that for any probability
measureµ, one has

|||P2
∗µ− εν∗||| = 1− ε .

Now take any two probability measuresµ andν. Denote byη± the positive (resp. negative) part
of µ− ν. Sinceµ andν are probability measures, one has|||η+||| = |||η−||| = ∆, say. Then, since
P∗ preserves probability, one has

|||P2
∗µ− P2

∗ν||| = |||P2
∗η+ − P2

∗η−||| ≤ |||P2
∗η+ −∆εν∗||| + |||P2

∗η− −∆εν∗|||
≤ 2∆(1− ε) = (1− ε)|||µ− ν||| .

This completes the proof of Proposition 2.1.

Theorem 1.3 is then an easy consequence of the following lemmas.

Lemma 2.2 For everyγ ≤ α, everyt > 0, and everyp ≥ 1, there exists a constantCγ,p,t such
that for every finite measureµ onH one has

|||P t
∗µ|||Vγ,p ≤ Cγ,p,t|||µ||| , (2.2)

withP t
∗ the semigroup acting on measures solving (SGL).

Lemma 2.3 For every compact setK ⊂ H, there exists a probability measureν∗ and a constant
δ > 0 such thatP(x, · ) ≥ δ ν∗( · ) for everyx ∈ K.

Proof of Theorem 1.3.Fix once and for allγ ≤ α and p ≥ 1. By Lemma 2.2, there exist
constantsC andδ such that the setK = {x ∈ H | ‖x‖γ ≤ C} satisfiesP(x,K) ≥ δ for every
x ∈ H. By Lemma 2.3, we can apply Proposition 2.1 to find

|||Pn
∗ µ− µ∗||| ≤ 2e−λn ,

for someλ > 0 and forn any integer. SinceP t
∗ preserves positivity and probability, one

immediately gets the same estimate for arbitrary real times. By Lemma 2.2 and the invariance
of µ∗, this yields for some constantC,

|||P t+1
∗ µ− µ∗|||Vγ,t ≤ Ce−λt .

The proof of Theorem 1.3 is complete.

Remark 2.4 Writing V instead ofVγ,p, condition (2.2) is equivalent to the statement that
ExV (Φ) ≤ C for all x ∈ H. It is also possible to achieve exponential convergence results
if this condition is replaced by the weaker condition that

ExV (Φ) ≤
{
cV (x) for x ∈ H \K,

Λ for x ∈ K,
(2.3)

with c ∈ (0, 1), Λ > 0 andK some compact set. The proof is somewhat lengthy and so we
do not give it here. The interested reader is referred to [MT94, RBT01]. The difference in the
results is that one gets an estimate of the type

|||P t+1
∗ µ− µ∗|||V ≤ Ce−λt|||µ|||V .

So strong convergence towards the invariant measure holds for measures with finite||| · |||V -norm
and not necessarily for every probability measure.

The remainder of the paper is devoted to the proof of Lemmas 2.2 and 2.3.
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3 Contraction Properties of the Dynamics

This section is devoted to the proof of Lemma 2.2. We reformulate it in a more convenient way
as

Proposition 3.1 For everyp ≥ 1, everyγ ≤ α, and every timet > 0, there is a constant
Cp,t,γ > 0 such that, for everyx ∈ H, one has

E(‖Φt(x)‖p
γ) ≤ Cp,t,γ . (3.1)

Proof. We define the linear operatorL = 1− ∂2
ξ and the stochastic convolution

WL(t) =
∫ t

0
e−L(t−s) QdW (s) .

With these notations, the solution of (SGL) reads

Φt(x) = e−Ltx−
∫ t

0
e−L(t−s)P(Φs(x)) ds+WL(t) . (3.2)

In a first step, we show that for every couple of times0 < t1 < t2, there exists a constantCp,t1,t2

independent of the initial conditionx such that

E
(

sup
t1<s<t2

‖Φs(x)‖L∞
)
≤ Cp,t1,t2 . (3.3)

For this purpose, we introduce the auxiliary processΨt(x) defined byΨt(x) = Φt(x) −WL(t).
We have forΨt the equation

Ψt(x) = e−Ltx−
∫ t

0
e−L(t−s)P(Ψs(x) +WL(s)) ds ,

i.e.Ψt(x) can be interpreted pathwise as the solution of the PDE

Ψ̇t = −LΨt − P(Ψt +WL(t)) , Ψ0 = x . (3.4)

If we denote byq the degree ofP (remember thatq ≥ 3), we have, thanks to the dissipativity of
L, the inequality

D−‖Ψt‖L∞

Dt
≤ c1 − c2‖Ψt‖q

L∞ + c3‖WL(t)‖q
L∞ , (3.5)

where theci are some strictly positive constants andD−/Dt denotes the left lower Dini deriva-
tive. An elementary computation allows to verify that the solutions of the ordinary differential
equationẏ = −cyq + f (t) (with positive initial condition andf (s) > 0) satisfy the inequality

y(t) ≤ (qct)−1/(q−1) +
∫ t

0
f (s) ds , (3.6)

independently of the initial condition. Standard estimates on Gaussian processes show further-
more that for everyt > 0 and everyp ≥ 1, there exists a constantCp,t such that

E( sup
s∈[0,t]

‖WL(s)‖p
L∞) ≤ Cp,t .
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Combining this with (3.6), we get (3.3).
It remains to exploit the dissipativity of the linear operatorL and the local boundedness of

the nonlinearity to get the desired bound (3.1). We write fors ∈ [t/2, t] the solution of (SGL)
as

Φs(x) = e−L(s−t/4)Φt/4(x)−
∫ s

t/4
e−L(s−r)P(Φr(x)) dr +

∫ s

t/4
e−L(s−r)QdW (r) .

Note that the last term of this equality has the same probability distribution asWL(s − t/4).
Since‖e−Ltx‖ ≤ t−1/2‖x‖L∞ , we have (remember thatq = degP):

E
(

sup
t/2<s<t

‖Φs(x)‖p
)
≤ Cp,t + Cp,tE( sup

t/4<s<3t/4

‖WL(s)‖p)

+ CE
(

sup
t/2<s<t

(∫ s

t/4
(s− r)−1/2‖P(Φr(x))‖L∞ dr

)p
)

≤ Cp,t + Cp,tE
(

sup
t/4<s<t

‖Φs(x)‖pq
L∞

)
≤ Cp,t .

In these inequalities, we used (3.3) and the fact thatE(sups∈[0,t] ‖WL(s)‖p
γ) is finite for every

γ ≤ α, every t > 0 and everyp ≥ 1. This technique can be iterated, using the fact that
‖e−Ltx‖γ+1/2 ≤ t−1/2‖x‖γ, until one obtains the desired estimate (3.1). The proof of Proposi-
tion 3.1 is complete.

4 Strong Feller Chains and Small Sets

The aim of this section is to show that a sufficient condition for the existence of sets with the
propertya.of Proposition 2.1 is that the Markov chain is open set irreducible and has the Strong
Feller property.

We follow closely [MT94] in our definitions. The main difference with their results is that
we drop the assumption of local compactness of the topological base space and that our esti-
mates hold globally with respect to the initial condition. We will adopt the following notations:

The symbolX stands for an arbitrary Polish space,i.e.a complete, separable metric space.
The symbolΦ stands for a Markov chain onX. We denote byP(x,A) the transition probabilities
of Φ. Them-step transition probabilities are denoted byPm(x,A). The symbolB(X) stands
for the Borelσ-field of X.

Definition 4.1 A setK ∈ B(X) is calledsmall if there exists an integerm > 0, a probability
measureν onX, and a constantδ > 0 such thatPm(x,A) ≥ δν(A) for everyx ∈ K and every
A ∈ B(X). If we want to emphasize the value ofm, we call a setm-small.

With this definition, we reformulate Lemma 2.3 as

Theorem 4.2 If Φ is irreducible and Strong Feller, every compact set is2-small.

The main step towards the proof of Theorem 4.2 is to show the existence of small sets which
are sufficiently big to be “visible” by the dynamics. Recall that a setA is said to beaccessible
if P(x,A) > 0 for everyx ∈ X. One has,
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Proposition 4.3 If Φ is irreducible and Strong Feller, there exist accessible small sets.

Proof of Theorem 4.2.Recall that Doob’s theorem guarantees the existence of a probability
measureµ0 such that the transition probabilitiesP(x, · ) are all equivalent toµ0. This is a
consequence of the Strong Feller property and the irreducibility ofΦ.

By Proposition 4.3 there exists a small setA such thatµ0(A) > 0. For everyx ∈ X and
every arbitraryD ∈ B(X), we then have

Pm+1(x,D) ≥
∫

A
P(y,D)Pm(x, dy) ≥ P(x,A) inf

y∈A
P(y,D) ≥ δP(x,A)ν(D) ,

for somem > 0, δ > 0 and a probability measureν. Since, by the Strong Feller property, the
functionx 7→ P(x,A) is continuous and, by the accessibility ofA, it is positive, there exists for
every compact setC ⊂ X a constantδ′ > 0 such that

inf
x∈C

Pm+1(x,D) ≥ δ′ν(D) .

The proof of Theorem 4.2 is complete.

The next subsection is devoted to the proof of Proposition 4.3.

4.1 Existence of accessible small sets

In this subsection, we will work with partitions ofX. We introduce the following notation: if
P is a partition ofX, we denote byP(x) the (only) element ofP that containsx. With this
notation, one has the following theorem, a proof of which can be founde.g.in [Doo53, p. 344].

Theorem 4.4 (Basic Differentiation Theorem)Let (X,F , µ) be a probability space andPn

be an increasing sequence of finite measurable partitions ofX such that theσ-field generated
by
⋃

n Pn is equal toF . Let ν be a probability measure onX which is absolutely continuous
with respect toµ with density functionh. Define the sequence of functionshn by

hn(x) =


ν(Pn(x))
µ(Pn(x))

if µ(Pn(x)) > 0,

0 if µ(Pn(x)) = 0.

Then there exists a setN with µ(N ) = 0 such thatlimn→∞ hn(x) = h(x) for everyx ∈ X \N .

This theorem is the main ingredient for the proof of Proposition 4.3.
The first point one notices is that ifX is a Polish space, one can explicitly construct a se-

quencePn of partitions that generate the Borelσ-field. Choose a sequence{xi}∞i=1 of elements
which are dense inX (the existence of such a sequence is guaranteed by the separability ofX)
and a sequence{εj}∞j=1 such thatεj > 0 and limj→∞ εj = 0. Denote byB(x, r) the open ball
of radiusr and centerx. We then define the setsM j

i (i ≥ 1 andj ≥ 0) by

M0
i = X , M j

i = B(xi, εj) .
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Figure 2: Construction ofD andE.

This defines an increasing sequence of finite partitionsPn by Pn =
∨

i,j≤n{M j
i } (∨ denotes

the refinement of partitions). We denote byF∞ theσ-field generated by
⋃

n Pn. Since every
open setS ⊂ X can be written as a countable union

S =
⋃
{M j

i |M
j
i ⊂ S} ,

the open sets belong toF∞ and soF∞ = B(X). This construction guarantees the applicability
of the Basic Differentiation Theorem to our situation. We are now ready to give the

Proof of Proposition 4.3.Let us denote byp(x, y) a jointly measurable version of the densities
of P(x, · ) with respect toµ0.

We define for everyx, y ∈ X the setsSx ∈ B(X) andS∗y ∈ B(X) by

Sx = {y ∈ X | p(x, y) > 1
2
} , S∗y = {x ∈ X | p(x, y) > 1

2
} ,

and the setS2 ∈ B(X× X) by

S2 = {(x, y) ∈ X× X | p(x, y) > 1
2
} .

SinceP(x,X) = 1 for everyx ∈ X, one hasµ0(Sx) > 0 for everyx and thereforeµ2
0(S

2) =∫
X µ0(Sx) dµ0(x) > 0, whereµ2

0 = µ0 × µ0. Define the subsetS3 of X3 by

S3 = {(x, y, z) ∈ X3 | (x, y) ∈ S2 and (y, z) ∈ S2} . (4.1)

One has similarlyµ3
0(S

3) =
∫
S2 µ0(Sy) dµ2

0(x, y) > 0. Let us now define the setsPn(x) as
above and definePn(x, y) = Pn(x)×Pn(y).

By Theorem 4.4 withµ = µ2
0 andν = µ2

0|S2, there exists aµ2
0-null setN such that for

(x, y) ∈ S2 \N one has

lim
n→∞

µ2
0(S

2 ∩Pn(x, y))
µ2

0(Pn(x, y))
= 1 .

Since on the other handµ3
0(S

3) > 0, there exist a triple (u, v, w) and an integern such that
µ2

0(Pn(u, v)) > 0, µ2
0(Pn(v, w)) > 0, and

µ2
0(S

2 ∩Pn(u, v)) ≥ 7
8
µ2

0(Pn(u, v)) , (4.2a)
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µ2
0(S

2 ∩Pn(v, w)) ≥ 7
8
µ2

0(Pn(v, w)) . (4.2b)

This means thatS2 covers simultaneously seven eights of the “surfaces” of both setsPn(u, v)
andPn(v, w). (See Figure 2 for an illustration of this construction.) As a consequence of
(4.2a), the set

D = {x ∈ Pn(u) | µ0(Sx ∩Pn(v)) ≥ 3
4
µ0(Pn(v))} ,

satisfiesµ0(D) ≥ 1
2
µ0(Pn(u)). Similarly, the set

E = {z ∈ Pn(w) | µ0(S
∗
z ∩Pn(v)) ≥ 3

4
µ0(Pn(v))} ,

satisfiesµ0(E) ≥ 1
2
µ0(Pn(w)). On the other hand, one has by the definitions ofE andD that

for x ∈ D andz ∈ E, µ0(Sx ∩ S∗z ) ≥ 1
2
µ0(Pn(v)). Thus

p2(x, z) ≥
∫

Sx∩S∗z

p(x, y)p(y, z)µ0(dy) ≥ 1

4
µ0(Sx ∩ S∗z ) ≥ 1

8
µ0(Pn(v)) , (4.3)

for every x ∈ D and everyy ∈ E. Defining a probability measureν by settingν(Γ) =
µ0(Γ ∩ E)/µ0(E), there existsδ > 0 such that for everyx ∈ D, one hasP(x,Γ) ≥ δν(Γ) and
thusD is small. Sinceµ0(D) > 0, the proof of Proposition 4.3 is complete.





V. Exponential Mixing Properties of Stochastic
PDEs Through Asymptotic Coupling

Abstract

We consider parabolic stochastic partial differential equations driven by white noise in time.
We prove exponential convergence of the transition probabilities towards a unique invariant
measure under suitable conditions. These conditions amount essentially to the fact that the
equation transmits the noise to all its determining modes. Several examples are investigated,
including some where the noise doesnotact on every determining mode directly.

1 Introduction

We are interested in the study of long-time asymptotics for parabolic stochastic partial differ-
ential equations. More precisely, the existence, uniqueness, and speed of convergence towards
the invariant measure for such systems is investigated. The general setting is that of a stochastic
PDE of the form

dx = Axdt+ F (x) dt+Qdω(t) , x(0) = x0 , (1.1)

wherex belongs to some Hilbert spaceH,A is the generator of aC0-semigroup onH, F :H →
H is some nonlinearity,ω is the cylindrical Wiener process on some other Hilbert spaceW, and
Q :W → H is a bounded operator. If the nonlinearityF is sufficiently “nice”, there exists a
unique solutionx(t) to (1.1) (seee.g.[DPZ92b]). In this paper, we investigate the asymptotic
stability of (1.1). We say that the solutions of (1.1) are asymptotically stable if there exists a
uniqueprobability measureµ∗ onH such that the laws ofx(t) converge toµ∗, independently
of the initial conditionx0. We are interested in the situation where the asymptotic stability is a
consequence of the noise (i.e.the deterministic equatioṅx = Ax + F (x) is not asymptotically
stable in the above sense), although the noise is weak, in the sense that the range ofQ in H is
“small”.

The investigation of asymptotic behaviour for solutions of (1.1) goes back to the early eight-
ies (see for example [MS99] for an excellent review article or the monograph [DPZ96] for a
detailed exposition). Until recently, two approaches dominated the literature on this subject.
For the first approach, sometimes called the “dissipativity method”, one considers two solu-
tionsx(t) andy(t) of (1.1), corresponding to the same realization of the Wiener processω, but
with different initial conditionsx0 andy0. If A andF are sufficiently dissipative,‖x(t)− y(t)‖
converges to0 for large times in some suitable sense. If this convergence is sufficiently fast
and uniform, it yields asymptotic stability results (see for example [DPZ92a]). Closely related
to this approach are the Lyapunov function techniques, developed for semilinear equations in
[Ich84]. The dissipativity method, as well as the Lyapunov function techniques, are limited by
the requirement that the deterministic equationẋ = Ax+F (x) already shows stable behaviour.

The (linearly) unstable situations are covered by the second approach, to which we refer as
the “overlap method”. It consists in showing that the Markov transition semigroup associated
to (1.1) has the strong Feller property and is topologically irreducible. Then, provided that
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the equation (1.1) shows some dissipativity, arguments as developed in the monograph [MT94],
allow to bound the overlap between transition probabilities starting at two different initial points.
This in turn yields strong asymptotic stability properties. The main technical difficulty of this
approach is to show that the strong Feller property holds. This difficulty is usually mastered
either by studying the infinite-dimensional backward Kolmogorov equation associated to (1.1)
[DPZ91], or by showing that the Markov transition semigroup has good smoothing properties
[DPEZ95, Cer99]. This technique is limited by the requirement that the noise be sufficiently
non-degenerate. A typical requirement is that the range ofQ containsthe domain of some
positive power of−A. To our knowledge, only one work [EH01b, Hai01] shows the strong
Feller property for a stochastic PDE in a situation where the range ofQ is not dense inH (but
still of finite codimension).

Very recently, a third approach, to which we refer as the “coupling method”, emerged in
a series of papers on the 2D Navier-Stokes equation. (See [KS01, Mat01, MY01] and the
references in Section 6.) The main idea of these papers is to make a splittingH = HL ⊕
HH of the dynamics into a finite-dimensional, linearly unstable, low-frequency partHL and a
remaining infinite-dimensional stable partHH . An important assumption onQ is then that the
range ofQ containsHL. The spaceHL is chosen in such a way that the long-time asymptotics
of the dynamics is completely dominated by the behaviour of the low-frequency part. More
precisely, for any given realizationxL(t) of the low-frequency part, the dynamics of the high-
frequency partxH(t) will loose memory of its initial condition exponentially fast. On the low-
frequency part, in turn, the noise acts in a non-degenerate way. A clever coupling argument
allows to combine these two facts in order to obtain asymptotic stability results. The argument
consists in coupling two realizations of (1.1) in such a way that if the low-frequency parts
meet at some timeτ , they remain equal for all timest > τ . (Of course, one has to show
that τ is finite with probability1.) In fact, this coupling method is very close to the Gibbsian
approach developed in [KS00, BKL00b, EMS01], which consisted in transforming the infinite-
dimensional Markovian system onH to a finite-dimensional non-Markovian system onHL.
This finite-dimensional system was shown to have exponentially decaying memory and thus
techniques from statistical mechanics can be applied.

Loosely speaking, the coupling method combines the arguments of both the dissipativity
method (onHH) and the overlap method (onHL). The coupling method thus yields a very
powerful approach to the problem of asymptotic stability of (1.1). The conditions of applica-
bility of this coupling method have been successively weakened in the aforementioned papers,
but the existing results always require, as we already mentioned, that the noise acts directly and
independently oneverydetermining mode of the equation. In this paper, we extend the cou-
pling method to problems which do not satisfy this condition. Our overall approach is similar
to the one exposed by Mattingly in [Mat01], and consequently some of our proofs are closely
related to the arguments exposed there. Our main new idea is to construct a coupling for which
the low-frequency parts of the dynamics do not actually meet at some finite time, but con-
verge exponentially fast towards each other. This “asymptotic coupling” is achieved through a
binding construction exposed in Section 2.3, which seems to be new and can in some cases be
implemented even in very degenerate situations.

In the following section, we illustrate the method of asymptotic coupling for a simple finite
dimensional problem.
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1.1 A toy model

Consider the following system of stochastic differential equations inR2:

dx1 = (2x1 + x2 − x3
1) dt+ dω(t) ,

dx2 = (2x2 + x1 − x3
2) dt .

(1.2)

This equation should be interpreted in the integral sense, withω ∈ Ω a Brownian motion. Ap-
plying Hörmander’s condition [Ḧor85, Nor86], it is easy to see that the transition probabilities
of (1.2) are smooth with respect to the Lebesgue measure onR2. Furthermore, an easy con-
trollability argument shows that they have support everywhere and therefore are all mutually
equivalent. Since (1.2) also exhibits a strong drift towards the center of the phase space at large
amplitudes, it follows by standard arguments that (1.2) possesses a unique invariant measureµ∗
and that every initial condition is exponentially (in variation norm) attracted byµ∗.

The problem with this argument is that it heavily relies on the existence of some reference
measure (in this case the Lebesgue measure) which is equivalent to the transition probabilities.
In the infinite-dimensional setting, such a reference measure will usually not exist when the
noise is sufficiently degenerate. (For an account of some cases where such a reference measure
does exist in the infinite-dimensional case, see [MS99, EH01b].) Furthermore, the fact that both
directions in (1.2) are linearly unstable prevents one from applying the coupling method as it is
presented in the previous section.

We will show that the invariant measure for (1.2) is unique, using a coupling construction
which pushes solutions together at an exponential rate. This construction is asymptotic, com-
pared to more conventional coupling constructions, which look for hitting times at which the
coupled dynamics actually meets.

Before we proceed, let us explain briefly what we mean by “coupling”. A coupling for (1.2)
is a process (x(t), y(t)) ∈ R2 × R2, whose marginalsx(t) andy(t) taken separately are both
solutions of (1.2) (but with different initial conditions). In general, one takes a measureP on
Ω × Ω, whose marginals are both equal to the Wiener measureW. Then a coupling for (1.2)
can be constructed by drawing a pair (ω, ω̃) ∈ Ω×Ω distributed according toP and solving the
equations

dx1 = (2x1 + x2 − x3
1) dt+ dω(t) , dy1 = (2y1 + y2 − y3

1) dt+ dω̃(t) ,

dx2 = (2x2 + x1 − x3
2) dt , dy2 = (2y2 + y1 − y3

2) dt . (1.3)

We will carefully choose the measureP in such a way that the quantity‖x − y‖ converges
exponentially to0 for large times. This then yields the uniqueness of the invariant measure for
(1.2).

Our main idea leading to the construction ofP is to consider the following system inR4:

dx1 = (2x1 + x2 − x3
1) dt+ dω(t) ,

dx2 = (2x2 + x1 − x3
2) dt ,

dy1 = (2y1 + y2 − y3
1) dt+ dω(t) +G(x1, x2, y1, y2) dt ,

dy2 = (2y2 + y1 − y3
2) dt ,

(1.4)
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wheredω denotes twice the same realization of the Wiener process. We see that this equation
is the same as (1.3) with̃ω defined by

ω̃(t) = ω(t) +
∫ t

0
G(x1(s), x2(s), y1(s), y2(s)) ds . (1.5)

The noisẽω ∈ Ω is distributed according to some measureW̃ which is in general not equal to
the Wiener measureW. Therefore, (1.4) does not yet define a coupling for (1.2). IfG is small
in the sense that the quantity∫ ∞

0
‖G(x1(s), x2(s), y1(s), y2(s))‖2 ds (1.6)

is bounded with sufficiently high probability, then the measuresW̃ andW are equivalent. In
this case, it is possible to construct a measureP on Ω × Ω whose marginals areW, with the
important property that there exists a random timeτ with P(τ <∞) = 1 such that the solutions
of the coupled system satisfy (1.4) for timest ≥ τ .

In view of the above, we have reduced the problem to finding a functionG such that the
solutions of (1.4) satisfy‖y(t)− x(t)‖ → 0 for t→∞ and (1.6) is bounded. We introduce the
difference process% = y − x, and we write

%̇1 = 2%1 + %2 − %1(x
2
1 + x1y1 + y2

1) +G(x, y) , (1.7a)

%̇2 = 2%2 + %1 − %2(x
2
2 + x2y2 + y2

2) . (1.7b)

It is easy to find a functionG such that%1 → 0, but this does not yet mean that%2 will go to
zero. A closer look at (1.7b) shows that if we could force%1 to be very close to−3%2, (1.7b)
could be written as

%̇2 = −%2 + ε− %2(x
2
2 + x2y2 + y2

2) ,

which is asymptotically stable. Introduce the functionζ = %1 + 3%2. We then have

ζ̇ = (. . .) +G(x1, x2, y1, y2) ,

with (. . .) an expression of the order‖%‖(1 + ‖x‖2 + ‖y‖2). Now we can of course choose
G = −(. . .) − 2ζ. This way, the equation forζ becomesζ̇ = −2ζ and we have the solution
ζ(t) = ζ(0)e−2t. Plugging this into (1.7b), we get

%̇2 = −%2 + ζ(0)e−2t − %2(x
2
2 + x2y2 + y2

2) .

We thus have the estimate

|%2(t)| ≤ |%2(0)|e−t + |ζ(0)|e−2t .

Finally, %1 is estimated by using the definition ofζ and we get

|%1(t)| ≤ |%2(0)|e−t + 4|ζ(0)|e−2t .

This shows that, withG chosen this way, there exists a constantC such that

‖x(t)− y(t)‖ ≤ C‖x(0)− y(0)‖e−t ,
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for almost every realization of the noise. Since typical realizations ofx(t) do not grow faster
than linearly,G is also of the ordere−t, with at most a polynomial factor int multiplying the
exponential. The main result of this paper, Theorem 4.1, shows that the above construction
implies the existence and uniqueness of an invariant probability measureµ∗ for the problem at
hand. Furthermore, it shows that the transition probabilities converge exponentially fast towards
µ∗ in the Vaseřstĕın norm (the dual norm to the Lipschitz norm on functions).

This concludes our presentation of the toy model. For a more precise statement, the reader
is encouraged to actually check that the above construction allows to verify the assumptions
stated in Section 5.

The remainder of this paper is organized as follows. In Section 2, we give the precise
definitions for the type of coupling we will consider. In Section 3, we state the properties of
the coupling that are required for our purpose. In Section 4, we prove the abstract formulation
of our main ergodic theorem. In Section 5, this abstract theorem is then specialized to the case
of stochastic differential equations. In Section 6 finally, we present several examples where our
construction applies, although the noise does not act directly on every determining mode of the
equation.
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2 The Coupling Construction

In this section, we explain our coupling construction. Before we start with the actual definitions
of the various objects appearing in the construction, we fix our notations.

2.1 Notations

If µ is a measure on a measurable spaceX (in the sequel, we will always consider Polish8

spaces) andf : X → Y is a measurable map, we denote byf ∗µ the measure onY defined by
(f ∗µ)(A) ≡ µ(f−1(A)). For example, ifΠ is a projection on one component of a product space,
Π∗µ denotes the marginal ofµ on this component. If a natural reference measure is given on
the current space, we denote byDµ the density ofµ with respect to the reference measure.

We define for any two measuresµ andν the measuresµ∧ν andµ\ν. If a common reference
measure is given, these operations act on densities like

(D(µ ∧ ν))(x) = min{Dµ(x) , Dν(x)} ,

(D(µ \ ν))(x) = max{Dµ(x)−Dν(x), 0} .

It immediately follows thatµ = (µ∧ν)+ (µ\ν) for any two measuresµ andν. We will use the
equivalent notationsµ ≤ ν andν ≥ µ to say thatµ∧ν = µ holds. One can check the following
relations:

f ∗(µ ∧ ν) ≤ f ∗µ ∧ f ∗ν ,

8i.e.complete, separable, and metric



92 EXPONENTIAL M IXING THROUGH ASYMPTOTIC COUPLING

f ∗(µ \ ν) ≥ f ∗µ \ f ∗ν .

Equalities hold iff is injective.
For a given topological spaceX, we denote byM (X) the space of all finite signed Borel

measures onX. We denote byM1(X) the set of all probability measures onX. Forµ ∈ M (X),
we denote by‖µ‖ its total variation norm (which is simply its mass ifµ has a sign).

2.2 Definition of coupling

In this section, and until the end of the paper, we will often consider familiesQy of measures
indexed by elementsy ∈ Y, with Y some Polish space. One should think ofy as the initial
condition of a Markov chain onY and of Qy either as its transition probabilities, or as the
measure on pathspace obtained by starting fromy. We will always assume that the functions
y 7→ Qy(A) are measurable for every Borel setA. If Qy is a family of measures onYn andRy is
a family of measures onYm, a family of measures (RQ)y onYn+m = Yn × Ym can be defined
on cylindrical sets in a natural way by

(RQ)y(A×B) =
∫

A
Rzn(B) Qy(dz) , (2.1)

whereA ⊂ Yn,B ⊂ Ym, andzn denotes thenth component ofz.
We consider a discrete-time Markovian random dynamical system (RDS)Φ on a Polish

spaceX with the following structure. There exists a “one-step” probability space (Ω,F ,P) and
Φ is considered as a jointly measurable mapΦ : (X,Ω) → X. The iterated mapsΦn : (X,Ωn) →
X with n ∈ N are constructed recursively by

Φn(x, ω1, . . . , ωn) = Φ(Φn−1(x, ω1, . . . , ωn−1), ωn) ,

This construction gives rise to a Markov chain onX (also denoted byΦ) with one-step transition
probabilities

Px ≡ Φ(x, · )∗P .

The n-step transition probabilities will be denoted byPn
x . Our main object of study will be

the family of measures on pathspace generated byΦ. Take a sequence{ωi}∞i=0 and an initial
conditionx ∈ X. We then definex0 = x andxi+1 = Φ(xi, ωi). We will denote byPn

x with n ∈
N ∪ {∞} the measure onXn obtained by transportingPn with the map{ωi} 7→ {xi}. It is also
natural to viewPn

x as a measure onXn × Ωn by transportingPn with the map{ωi} 7→ {xi, ωi},
so we will use both interpretations.

Remark 2.1 The above setup is designed for the study of stochastic differential equations
driven by additive noise. In that case,Ω is some Wiener space andΦ maps an initial condi-
tion and a realization of the Wiener process on the solution after time1. Nevertheless, our setup
covers much more general cases.

The coupling needs two copies of the pathspace,i.e.we will consider elements (x, y) ∈
X∞ ×X∞. It will be convenient to use several projectors fromXN ×XN to its components. We
define therefore (forn ≤ N ):

Π1 : (x, y) 7→ x , Π2 : (x, y) 7→ y , πn : (x, y) 7→ (xn, yn) .

We also defineπi,n ≡ Πi ◦ πn for i ∈ {1, 2}.
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Definition 2.2 LetΦ be a Markov chain on a Polish spaceX and letP∞x be the associated family
of measures on the pathspaceX∞. A couplingfor Φ is a familyC∞

x,y of probability measures on
X∞ × X∞ satisfying

Π∗
1C

∞
x,y = P∞x and Π∗

2C
∞
x,y = P∞y ,

whereΠ1 andΠ2 are defined as above.

A trivial example of coupling is given byC∞
x,y = P∞x × P∞y . The interest of constructing

a non-trivial coupling comes from the following observation. Take some suitable set of test
functionsG onX and define a norm onM (X) by

‖µ‖G = sup
g∈G

〈g, µ〉 .

Once the existence of an invariant measure for the Markov chainΦ is established, one usually
wishes to show its uniqueness by proving thatΦ forgets about its past sufficiently fast,i.e.

lim
n→∞

‖Pn
x − Pn

y ‖G = 0 , for all (x, y) ∈ X2 ,

with suitable bounds on the convergence rate as a function of the initial conditions. Now take a
couplingC∞

x,y for Φ. It is straightforward to see that by definition the equality

〈Pn
x , g〉 =

∫
X×X

g(z) (π∗1,nC∞
x,y)(dz)

holds, as well as the same equality whereπ1,n is replaced byπ2,n andPn
x is replaced byPn

y .
Therefore, one can write

‖Pn
x − Pn

y ‖G = sup
g∈G

∫
X×X

(g(Π1z)− g(Π2z)) (π∗nC∞
x,y)(dz) . (2.2)

This equation is interesting, because it is in many cases possible to construct a couplingC∞
x,y

such that forn large, the measureπ∗nC∞
x,y is concentrated near the diagonalΠ1z = Π2z, thus

providing through (2.2) an estimate for the term‖Pn
x −Pn

y ‖G. This is precisely what was shown
in our toy model of Section 1.1, where we constructedf in such a way that‖x(t) − y(t)‖ → 0
for t→∞.

2.3 The binding construction

In this subsection, we describe a specific type of coupling for a given RDSΦ. Only couplings
of that type will be taken under consideration in the sequel.

Let Φ and the associated probability space (Ω,F ,P) be as above. We consider a family
ψx→y : Ω → Ω (the pair (x, y) belongs toX2) of measurable functions that also have measurable
inverses. We will call these functionsbinding functionsfor Φ. The reason for this terminology
is that, given a realization{ωn}∞n=0 of the noise and a pair of initial conditions (x0, y0) ∈ X2,
the binding functions allow us to construct two paths{xn} and{yn} by setting

ω̃n = ψxn→yn(ωn) , xn+1 = Φ(xn, ωn) , yn+1 = Φ(yn, ω̃n) . (2.3)
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Our aim is to find a familyψx→y such thatyn converges towardsxn in a suitable sense for large
values ofn. Thus, the binding functions play the role of a spring betweenx andy. We will say
that (2.3) is abinding constructionfor Φ. We denote the inverse ofψx→y by ψx←y. The reason
behind this notation should be clear from the diagram below.

xn

xn+1

Φ( · , ωn)

yn

yn+1

Φ( · , ω̃n)ωn ω̃n

ψxn→yn

ψxn←yn

(2.4)

The solid arrows denote the various maps and the dashed arrows denote the influences of the
appearing quantities on those maps. It shows that it is also possible to achieve the binding
construction by first choosing a sequence{ω̃n}∞n=0 and then usingψxn←yn to construct theωn,
thus obtaining the same set of possible realizations for (xn, yn). This symmetry betweenψx→y

andψx←y is also explicit in (2.6) below.
Guided by the above construction, we use the binding maps to construct a coupling Markov

chainΨ onX× X with transition probabilitiesCx,y in the following way. Define the maps

Ψx→y : Ω → Ω× Ω Ψx←y : Ω → Ω× Ω

ω 7→ (ω, ψx→y(ω)) , ω 7→ (ψx←y(ω), ω) .
(2.5)

Notice that, up to some null set, the image of both maps is the set{(ω, ω̃) | ω̃ = ψx→y(ω)}.
Then we define a family of measuresPx,y onΩ× Ω by

Px,y = (Ψ∗
x→yP) ∧ (Ψ∗

x←yP) = Ψ∗
x←y(P ∧ ψ∗x→yP) . (2.6)

According to (2.4), the measurePxn,yn
is precisely the common part between the measure ob-

tained for (ωn, ω̃n) by distributingωn according toP and the one obtained by distributing̃ωn

according toP. Thus both marginals of the measurePx,y are smaller (in the sense of Section 2.1)
thanP. In order to have a non-trivial construction, we impose that the measuresP andψ∗x→yP
are equivalent. The density ofψ∗x→yP relative toP will be denoted byDx,y(ω).

Considering again (2.4), the family of measuresPx,y is transported onX× X by defining

Φx,y : Ω× Ω → X× X

(ω, ω̃) 7→ (Φ(x, ω),Φ(y, ω̃)) ,

and setting
Qx,y ≡ Φ∗

x,yPx,y . (2.7)

But this does not give a transition probability function yet, since the measuresPx,y are not
normalized to1. We therefore define the family of measuresPx,y by

Px,y = Px,y + cx,y (P \ Π∗
1Px,y)× (P \ Π∗

2Px,y) ,

where the numbercx,y is chosen in such a way that the resulting measure is a probability mea-
sure. By a slight abuse of notation, we used here the symbolΠi to denote the projection on the
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ith component ofΩ×Ω. As a matter of fact,(P \Π∗
1Px,y) and(P \Π∗

2Px,y) have the same mass,
which is equal to1− ‖Px,y‖, so

cx,y =
1

‖P \ Π∗
2Px,y‖

,

for example. (Recall that the symbol‖ · ‖ stands for the total variation norm, which is simply
equal to its mass for a positive measure.) It is straightforward to show that the following holds:

Lemma 2.3 The measuresPx,y satisfyΠ∗
i Px,y = P for i = 1, 2.

Proof. It is clear by (2.6) thatΠ∗
i Px,y ≤ P. Thus

Π∗
1Px,y = Π∗

1Px,y + cx,y‖P \ Π∗
2Px,y‖(P \ Π∗

1Px,y)

= (P ∧ Π∗
1Px,y) + (P \ Π∗

1Px,y) = P ,
(2.8)

and similarly forΠ∗
2Px,y.

This finally allows us to define the transition probabilities forΨ by

Cx,y = Φ∗
x,yPx,y ≡ Qx,y + Rx,y . (2.9)

In this expression, the only feature ofRx,y we will use is that it is a positive measure. We define
C∞

x,y as the measure on the pathspaceX∞ × X∞ obtained by iterating (2.1). SinceΠ1 ◦ Φx,y =
Φ(x, ·) ◦ Π1 and similarly forΠ2, it is straightforward to verify, using Lemma 2.3, that the
measureC∞

x,y constructed this way is indeed a coupling forΦ.
For a given step ofΨ, we say that the trajectories do couple if the step is drawn according

to Qx,y and that they don’t couple otherwise.

Remark 2.4 SincePx,y is a family of measures onΩ×Ω, it is also possible to interpretCn
x,y as

a family of probability measures onXn×Xn×Ωn×Ωn. We will sometimes use this viewpoint
in the following section. It is especially useful when the RDSΦ is obtained by sampling a
continuous-time process.

Remark 2.5 It will sometimes be useful to have an explicit way of telling whether a step ofΨ
is taken according toQ∞

x,y or according toR∞
x,y (i.e.whether the trajectories couple or not). To

this end, we introduce a Markov chain̂Ψ on the augmented phase spaceX × X × {0, 1} with
transition probabilities

Px,y = Qx,y × δ1 + Rx,y × δ0 .

The marginal of̂Ψ onX× X is of course equal toΨ. By a slight abuse of notation, we will also
write C∞

x,y for the probability measure on pathspace induced byΨ̂.

It will be useful in the sequel to have a map that “transports” the family of mapsψx→y on
Ωn via the RDSΦ. More precisely, fix a pair (x, y) ∈ X × X of starting points and a sequence
(ω0, . . . , ωn) of realizations of the noise. We then definex0 = x, y0 = y, and, recursively for
i = 0, . . . , n

xi+1 = Φ(xi, ωi) , yi+1 = Φ(yi, ψxi→yi
(ωi)) .
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This allows us to define the family of mapsΞn
x,y : Ωn → Ωn by

Ξn+1
x,y (ω0, . . . , ωn) 7→ (ψx0→y0(ω0), . . . , ψxn→yn(ωn)) . (2.10)

Sinceψ∗x→yP is equivalent toP, we see that(Ξn
x,y)

∗Pn is equivalent toPn and we denote its
density byDn

x,y. We also notice that the family of measuresQn
x,y is obtained by transporting

(Ξn
x,y)

∗Pn ∧ Pn ontoXn × Xn with the mapsΦxi,yi
◦Ψxi→yi

. In particular, one has the equality

‖Qn
x,y‖ = ‖(Ξn

x,y)
∗Pn ∧ Pn‖ =

∫
Ωn

(1 ∧ Dn
x,y(ω)) Pn(dω) . (2.11)

3 Assumptions on the Coupling

In this section, we investigate the properties of the couplingC∞
x,y constructed in the previous

section. We give a set of assumptions on the binding functionsψx→y that ensure the existence
and uniqueness of the invariant measure forΦ.

In order to achieve this, we want the mapψx→y to modify the noise in such a way that
trajectories drawn according toQx,y tend to come closer together. This will be the content of
AssumptionA3. Furthermore, we want to know that this actually happens, so the noise should
not be modified too much. This will be the content of assumptionsA4 andA5. All these nice
properties usually hold only in a “good” region of the phase space. AssumptionsA1 andA2
will ensure that visits to this good region happen sufficiently often.

3.1 Lyapunov structure

Since we are interested in obtaining exponential mixing, we need assumptions of exponential
nature. Our first assumption concerns the global aspects of the dynamics. It postulates thatΦ
is attracted exponentially fast towards a “good” region of its state space. We achieve this by
assuming the existence of a Lyapunov function forΦ.

Definition 3.1 Let Φ by a RDS with state spaceX as before. ALyapunov functionfor Φ is a
functionV : X → [0,∞] for which there exist constantsa ∈ (0, 1) andb > 0, such that∫

Ω
V (Φ(x, ω)) P(dω) ≤ aV (x) + b , (3.1)

for everyx ∈ X with V (x) <∞.

Our first assumption then reads

A1 There exist a Lyapunov functionV for Φ. Furthermore,V is such that

P{ω | V (Φ(x, ω)) <∞} = 1 ,

for everyx ∈ X.

For convenience, we also introduce the functionṼ : X× X → [0,∞] defined by

Ṽ (x, y) = V (x) + V (y) .
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Notice thatṼ is a Lyapunov function forΨ by construction.
In some cases, when the control over the densitiesDx,y is uniform enough or when the phase

space is already compact (or bounded), a Lyapunov function is not needed. In such a situation,
one can simply chooseV ≡ 1.

In our case of interest, the RDSΦ is obtained by sampling a continuous-time processΦt at
discrete times. In that setting, it is useful to have means to control excursions to large amplitudes
that take place between two successive sampling times. To this end, we introduce a function
W : X× Ω → [0,∞] given by

W (x, ω) = sup
t∈[0,1]

V (Φt(x, ω))

in the continuous-time setting and by

W (x, ω) = V (x)

in the discrete-time setting. In fact, any other choice ofW is all right, as long as it satisfies the
properties that are summarized in AssumptionA2 below.

Before stating these properties, we define two other functions that act on pairs of initial
conditions that couple by

Wx→y(ω) = W (x, ω) +W (y, ψx→y(ω)) ,

Wx←y(ω) = W (x, ψx←y(ω)) +W (y, ω) .
(3.2)

We will assume thatW and the binding functions are such thatW , Wx→y andWx←y do not
behave much worse thanV . More precisely, we will assume that:

A2 There exists a functionW : X× Ω → [0,∞] such that

ess inf
ω∈Ω

W (x, ω) = V (x) , (3.3a)∫
Ω
W (x, ω) P(dω) ≤ c V (x) , (3.3b)

for some constantc > 0. Furthermore, there exist constantsC > 0 andδ ≥ 1 such that the
estimates

Wx→y(ω) ≤ C(1 + V (y) +W (x, ω))δ ,

Wx←y(ω) ≤ C(1 + V (x) +W (y, ω))δ ,
(3.4)

hold for the functions defined in (3.2).

The Lyapunov structure given by assumptionsA1 andA2 ensures thatW (and thus alsoV )
does not increase too fast along a typical trajectory. In order to make this statement precise, we
define for a given initial conditionx ∈ X the setsAx,k ⊂ Ω∞ by

Ax,k = {ω ∈ Ω∞ | W (Φn(x, ω), ωn) ≤ kV (x) + kn2 ∀n > 0} , (3.5)

wherek is some positive constant. The setsAx,k contain almost every typical realization of the
noise:



98 EXPONENTIAL M IXING THROUGH ASYMPTOTIC COUPLING

Lemma 3.2 Let Φ be a RDS satisfying assumptionsA1 andA2. Then, there exists a constant
C > 0 such that

P∞(Ax,k) ≥ 1− C

k
,

for everyx ∈ X and everyk > 0.

Proof. Forω ∈ Ω∞, we definexn = Φn(x, ω). Notice that by (3.3b) and the Lyapunov struc-
ture, one has the estimate

E(W (xn, ωn+1)) ≤ canV (x) +
bc

1− a
, (3.6)

whereE denotes expectations with respect toP∞. We also notice thatAx,k =
⋂

n>0A
(n)
x,k with

A(n)
x,k = {ω | W (xn, ωn+1) ≤ kV (x) + kn2} .

Combining this with (3.6), we see that

P∞(A(n)
x,k) ≥ 1− c

k

anV (x) + b(1− a)−1

V (x) + n2
.

Therefore, the worst possible estimate forP∞(Ax,k) is

P∞(Ax,k) ≥ 1− c

k

∞∑
n=1

anV (x) + b(1− a)−1

V (x) + n2
,

which proves the claim.

3.2 Binding property

The crucial property of the coupling is to bring trajectories closer together. In order to make this
statement more precise, we introduce the Lipschitz norm‖ · ‖L defined on functionsg : X → R
by

‖g‖L = sup
x∈X

|g(x)|+ sup
x,y∈X

|g(x)− g(y)|
d(x, y)

,

whered(·, ·) denotes the distance inX. The dual norm onM (X) is then given by

‖µ‖L = sup
‖g‖L=1

∫
X
g(x)µ(dx) .

With this definition at hand, we make the following assumption on the coupling partQ∞
x,y.

A3 There exist a positive constantγ1 and a family of constantsK 7→ CK such that, for every
K > 0,

‖π∗1,nQ∞
x,y − π∗2,nQ∞

x,y‖L ≤ CKe
−γ1n , (3.7)

holds wheñV (x, y) ≤ K.
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Remark 3.3 The sub-probability kernelsQx,y are smaller than the transition probabilities for
the binding construction (2.3). Thus, (3.7) is implied by an inequality of the type

E(d(xn, yn)) ≤ CṼ (x0, y0)e
−γ1n ,

whered denotes the distance inX andE denotes the expectation with respect to the construction
(2.3).

Notice that this assumption is non-trivial only if our coupling is such that‖Q∞
x,y‖ > 0 for

sufficiently many starting points. This will be ensured by the next assumption.

A4 LetDn
x,y be defined as in Section 2.3. We assume that for everyK > 0, there exists a family

of setsΓK
x,y ⊂ Ω∞ and constantsc1, c2 > 0 such that the estimates

P∞(ΓK
x,y) > c1 ,

∫
ΓK

x,y

(Dn
x,y(ω))−2 Pn(dω) < c2 , (3.8)

hold for everyn ≥ 0, whenever̃V (x, y) ≤ K. The integral overΓK
x,y in (3.8) should be

interpreted as the integral over the projection ofΓK
x,y onto itsn first components.

A typical choice forΓK
x,y is ΓK

x,y = Ay,k or ΓK
x,y = Ax,k ∩ Ay,k with k sufficiently large as a

function ofK. In this case, Lemma 3.2 ensures that the conditions required onΓK
x,y are satisfied.

As a consequence of AssumptionA4, we have

Proposition 3.4 Let Q∞
x,y be defined as above and suppose that assumptionsA1 andA4 hold.

Then there exists for everyK a constantCK such that‖Q∞
x,y‖ ≥ CK , whenever̃V (x, y) ≤ K.

Proof. Notice first that ifµ1 andµ2 are two equivalent probability measures withµ2(dx) =
D(x)µ1(dx), then the condition ∫

A
(D(x))−2 µ1(dx) < c

implies that

(µ1 ∧ µ2)(A) ≥ µ1(A)2

4c
,

see,e.g.[Mat01]. Recalling (2.11), we use Lemma 3.2 and the above estimate withµ1 = Pn,
D = Dn

x,y, andA = ΓK
x,y. Taking the limitn→∞ and using the assumption onΓK

x,y proves the
claim.

Our last assumption will ensure that trajectories that have already coupled for some time
have a very strong tendency to couple for all times.

In order to formulate our assumption, we introduce a family of setsQn
K(x, y), which are the

possible final states of a “coupled” trajectory of lengthn, starting from (x, y), and never leaving
the set{(a, b) | V (a) + V (b) ≤ K}. For a given pair of initial conditions (x, y) ∈ X2 with
Ṽ (x, y) ≤ K, we define the family of setsQn

K(x, y) ⊂ X× X recursively in the following way:

Q0
K(x, y) = {(x, y)} ,
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Qn+1
K (x, y) =

⋃
(a,b)∈Qn

K (x,y)

{(Φa,b ◦Ψa→b)(ω) | ω ∈ Ω andWa→b(ω) ≤ K} .

Notice that we would have obtained the same sets by reversing the directions of the arrows in
the definition.

We also denote byDx,y(ω) the density ofψ∗x→yP relative toP.

A5 There exist positive constantsC2, γ2 andζ, such that for everyK > 0, every(x0, y0) ∈ X2

with Ṽ (x0, y0) ≤ K, and every(x, y) ∈ Qn
K(x0, y0), the estimate∫

Wx←y(ω)≤K
(1−Dx,y(ω))2 P(dω) ≤ C2e

−γ2n(1 +K)ζ , (3.9)

holds forn > ζ ln(1 +K)/γ2.

This assumption means that if the process couples for a timen, the densityDx,y is close to1
on an increasingly large set, and therefore the probability of coupling for a longer time becomes
increasingly large. This assumption is sufficient for the family of measures (RQn)x,y to have an
exponential tail at large values ofn. More precisely, we have

Proposition 3.5 Let assumptionsA1, A2 andA5 hold. Then, there exists a positive constant
γ3 and, for everyK > 0, a constantCK such that

‖(RQn)x,y‖ ≤ CKe
−γ3n , (3.10)

holds for everyn > 0, whenever̃V (x, y) ≤ K.

We first show the following elementary estimate (it is not optimal, but sufficient for our
needs):

Lemma 3.6 Letµ1, µ2 ∈ M1(X) be two equivalent probability measures with

µ2(dx) = D(x)µ1(dx) .

Then the conditions

µ1(A) ≥ 1− ε1 and
∫
A
(1−D(x))2 µ1(dx) ≤ ε2 ,

for some measurable setA imply that

(µ1 ∧ µ2)(A) ≥ 1− ε1 − ε
1/2
2 .

Proof. Define the setE ⊂ X by

E = A ∩ {x ∈ X | D(x) ≥ 1} .

We then have

(µ1 ∧ µ2)(A) = µ1(E) +
∫

A\E
D(x)µ1(dx)
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= µ1(A)−
∫

A\E
(1−D(x))µ1(dx)

≥ µ1(A)−
∫

A\E
|1−D(x)|µ1(dx)

≥ 1− ε1 −
√∫

A\E
(1−D(x))2 µ1(dx) .

This shows the claim.

Proof of Proposition 3.5.Fix the valuen and the pair (x, y). For everycn ≥ Ṽ (x, y) (we will
fix it later), we have the estimate

‖(RQn)x,y‖ =
∫
X2

(1− ‖ψ∗xn→yn
P ∧ P‖) (π∗nQn

x,y)(dxn, dyn) (3.11)

≤ (π∗nQn
x,y)(X

2 \Qn
cn

(x, y))

+
∫

Qn
cn (x,y)

(1− ‖ψ∗xn→yn
P ∧ P‖) (π∗nQn

x,y)(dxn, dyn) .

Now choose another valuewn to be fixed later and consider for every (xn, yn) the set

Bn = {ω ∈ Ω |Wxn←yn(ω) ≤ wn} .

By the definition ofQn
cn

(x, y), its elements (xn, yn) satisfy in particularṼ (xn, yn) ≤ cn. By
AssumptionA2 and the Lyapunov structure, we have for every (xn, yn) ∈ Qn

cn
(x, y) the estimate

P(Bn) ≥ 1− C
cn

w
1/δ
n

.

Combining this and AssumptionA5 with Lemma 3.6 yields

‖ψ∗xn→yn
P ∧ P‖ ≥ 1− C

cn

w
1/δ
n

− Ce−γ2n/2(1 + wn)ζ/2 ,

as long aswn is such that

wn ≥ cn and n ≥ ζ ln(1 + wn)/γ2 . (3.12)

It remains to give an upper bound for(π∗nQn
x,y)(X

2\Qn
cn

(x, y)) to complete our argument. Define
the setsAn(K) ⊂ Xn × Xn × Ωn × Ωn by

An(K) = {(xi, yi, ωi, ηi)
n
i=1 | W (xi, ωi) +W (yi, ηi) ≤ K} .

It is clear by the definition ofQn
cn

(x, y) that we have the equality

(π∗nQn
x,y)(X

2 \Qn
cn

(x, y)) = Qn
x,y(X

n × Xn × Ωn × Ωn \ An(cn)) ,

whereQn
x,y is considered as a measure onXn × Xn × Ωn × Ωn, following Remark 2.4. Since

Qn
x,y ≤ Cn

x,y, we have

(π∗nQn
x,y)(X

2 \Qn
cn

(x, y)) ≤ 1− Cn
x,y(A

n(cn)) ≤ C
n(Ṽ (x, y) + 1)

cn
,
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for some constantC. This last estimate is obtained in a straightforward way, following the lines
of the proof of Lemma 3.2. Plugging these estimates back into (3.11) yields

‖(RQn)x,y‖ ≤ C
n(Ṽ (x, y) + 1)

cn
+ C

cn

w
1/δ
n

+ Ce−γ2n/2(1 + wn)ζ/2 .

At this point, we make use of our freedom to choosecn andwn. We set

cn = Ṽ (x, y) + eγcn and wn = Ṽ (x, y) + eγwn ,

with γc andγw given by

γc =
1

2 + 2δζ
γ2 and γw =

δ

1 + δζ
γ2 .

As a consequence, there exist for anyγ < γc some constantsC andc such that

‖(RQn)x,y‖ ≤ C(1 + Ṽ (x, y))ce−γn ,

as long asn ≥ ζ ln(1+wn)/γ2. (Such a value ofn can always be found, because the exponentγw

is always smaller thanγ2/ζ.) In order to complete the argument, we notice that (3.10) is trivially
satisfied for small values ofn because‖(RQn)x,y‖ is always smaller than1 by definition: it
suffices to chooseCK sufficiently big. The proof of Proposition 3.5 is complete.

4 An Exponential Mixing Result

This section is devoted to the proof of the main theorem of this paper.

Theorem 4.1 Let Φ be a RDS with state spaceX satisfying assumptionsA1–A5. Then, there
exists a constantγ > 0 such that

‖Pn
x − Pn

y ‖L ≤ C(1 + Ṽ (x, y)) e−γn ,

for every(x, y) ∈ X2 and everyn > 0.

Remark 4.2 The proof of Theorem 4.1 does not rely on assumptionsA4 andA5 directly, but on
the conclusions of Propositions 3.4 and 3.5. Nevertheless, in the setting of stochastic differential
equations, it seems to be easier to verify the assumptions rather than to show the conclusions of
the propositions by other means.

Corollary 4.3 If Φ satisfies assumptionsA1–A5, it possesses a unique invariant measureµ∗
and

‖Pn
x − µ∗‖L ≤ C(1 + V (x)) e−γn .

Proof of the corollary.To show the existence of the invariant measureµ∗, we show that for any
given initial conditionx with V (x) <∞, the sequence of measuresPn

x is a Cauchy sequence in
the norm‖ · ‖L. We have indeed

‖Pn
x − Pn+k

x ‖L = sup
‖g‖L≤1

∫
X
g(z)(Pn

x − Pn+k
x )(dz)
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= sup
‖g‖L≤1

∫
X

∫
X
g(z)(Pn

x − Pn
y )(dz) Pk

x (dy)

≤
∫
X
‖Pn

x − Pn
y ‖L Pk

x (dy) ≤ Ce−γn
∫
X
(1 + Ṽ (x, y)) Pk

x (dy)

≤ Ce−γn(1 + V (x)) ,

where we used the Lyapunov structure to get the last inequality.
The claim now follows immediately from the theorem, noticing that ifµ∗ is an invariant

measure forΦ, then ∫
X
V (x)µ∗(dx) ≤ b

1− a
,

due to the Lyapunov structure and the fact that the dynamics immediately leaves the setV −1(∞).

Before we turn to the proof of Theorem 4.1, we introduce some notations and make a few
remarks. By iterating (2.9), one sees that

C∞
x,y = Q∞

x,y +
∞∑

n=0

(C∞RQn)x,y , (4.1)

where the symbol(C∞RQn)x,y is to be interpreted in the sense of (2.1). This expression is the
equivalent, in our setting, of Lemma 2.1 in [Mat01]. Using (4.1), the Markov chainΨ can be
described by means of another Markov chainΥ on Y = (X2 × N) ∪ {?}, where? corresponds
to “coupling for all times” in the sense of Section 2.3. First, we define

K0 =
4b

1− a
, K̃0 = {(x, y) | Ṽ (x, y) ≤ K0} , (4.2)

wherea andb are the constants appearing in the Lyapunov condition. This set is chosen in such
a way that ∫

X×X
Ṽ (x, y) Cx0,y0(dx, dy) ≤ 1 + a

2
Ṽ (x0, y0) , ∀ (x0, y0) 6∈ K̃0 . (4.3)

At time 0, Υ is located at (x, y, 0). If it is located at (x, y, n) and (x, y) 6∈ K̃0, then it makes
one step according toCx,y andn is incremented by one:

P(x,y,n) = Cx,y × δn+1 .

If Υ is located at (x, y, n) and (x, y) ∈ K̃0, then it has a probability‖Q∞
x,y‖ of jumping to? and

a probability‖(RQm)x,y‖ of makingm steps according to (RQm)x,y:

P(x,y,n) = ‖Q∞
x,y‖δ? +

∞∑
m=0

π∗m(RQm)x,y × δn+m+1 .

If Υ is located at?, it remains there:
P? = δ? .
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The Markov chainΥ induces a familyP̂∞x,y of probability measures onY∞. Let τ̂ : Y∞ →
N ∪ {∞} be the function that associates to a sequence of elements inY the largest value ofn
that is reached by the sequence (τ̂ = 0 if the sequence is equal to? repeated). We also define
κ̂ : Y∞ → N∪{∞} as the value ofn attained at the first non-vanishing time when the sequence
hits the setK̃0 × N (κ̂ = ∞ if this set is never reached). The construction ofΥ is very close to
the coupling construction of [Mat01].

The crucial observation for the proof of Theorem 4.1 is

Lemma 4.4 Let Φ be a RDS with state spaceX satisfying assumptionsA1 andA3, and letΥ
be defined as above. Then, there exists a constantC such that

‖Pn
x − Pn

y ‖L ≤ P̂∞x,y({τ̂ ≥ n/2}) + Ce−γ1n/2 ,

for every(x, y) ∈ X2 and everyn > 0.

Proof. Recall the Markov chain̂Ψ defined in Remark 2.5. We define a functionτ1 on its
pathspace by

τ1 : X∞ × X∞ × {0, 1}∞ → N ∪ {∞}
{(xi, yi, bi)}∞i=1 7→ inf{n | (xn, yn) ∈ K̃0 andbi = 1 ∀i ≥ n} .

Combining (2.2) with AssumptionA5 and the definition ofτ1, one sees that

‖Pn
x − Pn

y ‖L ≤ C∞
x,y({τ1 ≥ n/2}) + Ce−γ1n/2 .

From the construction ofΥ and the definition of̂τ , we see furthermore that the probability
distributions ofτ1 underC∞

x,y and ofτ̂ underP̂∞x,y are the same.

Proof of Theorem 4.1.It remains to show that̂P∞x,y({τ̂ ≥ n/2}) has an exponential tail. The
key observation is the following. Letxn ∈ N ∪ {−∞} with n ≥ 0 be a Markov chain defined
by

x0 = 0 , xn+1 =
{−∞ with probabilityp?,
xn +m with probabilitypm,

wherem ≥ 1 and, of course,p? +
∑∞

m=1 pm = 1.

Lemma 4.5 If thepm have an exponential tail and we defineτ = maxn xn, then the probability
distribution ofτ also has an exponential tail.

Proof. The claim is an easy consequence of Kendall’s theorem, but for the sake of complete-
ness, and because the proof is quite elegant, we outline it here. Define the analytic function
p(ζ) =

∑∞
m=1 pmζ

m and defineqn as the probability ofτ being equal ton. Notice that, because
of the exponential tail,p is analytic in a disk of radius strictly bigger than1 around the origin.
A straightforward computation shows thatq0 = p? and, forn > 0,

qn = p?

(
pn +

∑
k1+k2=n

pk1pk2 +
∑

k1+k2+k3=n

pk1pk2pk3 + . . .
)

,
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which is equal to thenth Taylor coefficient of the function

q(ζ) =
p?

1− p(ζ)
.

Sincep(1) = 1 − p? < 1, there exists anε > 0 such thatp(1 + ε) < 1. Furthermore, since the
pn are all positive, one has the estimate|p(ζ)| ≤ p(|ζ|). Using Cauchy’s formula on a circle of
radius1 + ε, one gets

|qn| ≤
p?

1− p(1 + ε)
1

(1 + ε)n
,

which shows the claim.

Before we prove Theorem 4.1 in full generality, we restrict ourselves to the case when (x, y) ∈
K̃0. It follows from the construction that̂τ (seen as a random variable under the distribution
induced byP̂∞x,y) is dominated by the processxn constructed above with the tail distribution of
thepm being equal to

p̃m = sup
(x,y)∈K̃0

P̂∞x,y({κ̂ = m}) .

This means that we definem∗ as

m∗ = inf
{
m
∣∣∣ ∞∑

n=m

p̃n ≤ 1
}

,

and then setpm = p̃m for m ≥ m∗, pm = 0 for m < m∗ − 1, andpm∗−1 in such a way that the
pn sum up to1.

Because of Lemma 4.5, it suffices to show that the tail distribution of thep̃m decays expo-
nentially. We thus estimate the quantityP̂∞x,y({κ̂ ≥ n}). To this end, we introduce the function
τΨ : X∞ × X∞ → N ∪ {∞} defined by

τΨ(x, y) = inf{n > 0 | (xn, yn) ∈ K̃0} .

Notice that, in order to havêκ ≥ n, there are two possibilities. Either the first step ofΥ is
taken according to (RQm)x,y with somem ≥ n/2, or the corresponding realization ofΨ stays
outside ofK̃0 for a time longer thann/2. This yields the estimate

P̂∞x,y({κ̂ ≥ n}) ≤
∞∑

m=n/2

‖(RQm)x,y‖+
n

2
sup

(x0,y0)∈K̃0

C∞
x0,y0

({τΨ ≥ n/2}) ,

holding for (x, y) ∈ K̃0. The first term has an exponential tail by Proposition 3.5. The second
term has also an exponential tail by (4.3) and standard Lyapunov techniques (seee.g.[MT94,
Thm 15.2.5]). This concludes the proof of Theorem 4.1 for the case (x, y) ∈ K̃0.

In order to conclude the proof for the case (x, y) 6∈ K̃0, notice that

P̂∞x,y({τ̂ ≥ n}) ≤
∞∑

m=1

C∞
x,y({τΨ = m}) sup

(x0,y0)∈K̃0

P̂∞x0,y0
({τ̂ ≥ n−m})
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≤ n

2
sup

(x0,y0)∈K̃0

P̂∞x0,y0
({τ̂ ≥ n/2}) +

∞∑
m=n/2

C∞
x,y({τΨ = m}) .

The first term is bounded by the construction above. The Lyapunov structure implies that there
exists a constantγ > 0 such that the first hitting timeτΨ satisfiesE(x,y)e

γτΨ = O(Ṽ (x, y)) for
every (x, y) ∈ X2 (see again [MT94, Thm. 15.2.5]). This allows to bound the second term and
concludes the proof of Theorem 4.1.

5 Application to Stochastic Differential Equations

In this section, we will see how to apply Theorem 4.1 to the case when the RDSΦ is constructed
by sampling the solution of a (possibly infinite-dimensional) stochastic differential equation.
We will restrict ourselves to the case where the equation is driven by additive white noise.
The case of multiplicative noise requires further estimates, but can also be described by the
formalism exposed here.

Consider the equation described by

dx(t) = Axdt+ F (x) dt+Qdω(t) , x(0) = x0 , (5.1)

wherex belongs to some separable Hilbert spaceH, ω is the cylindrical Wiener process on
some separable Hilbert spaceW, andA, F andQ satisfy the following assumptions:

B1 a. The linear operatorA : D(A) → H is the generator of a strongly continuous semi-
group onH.

b. The operatoreAtQ :W → H is Hilbert-Schmidt for everyt > 0 and one has the
estimate ∫ 1

0
‖eAtQ‖2

HSdt <∞ . (5.2)

c. The nonlinear operatorF : D(F ) → H is such that, for everyx0 ∈ H, there exists a
unique, continuous stochastic processx(t) such thatx(s) ∈ D(F ) for s > 0 and

x(t) = eAtx0 +
∫ t

0
eA(t−s)F (x(s)) ds+

∫ t

0
eA(t−s)Qdω(s) , (5.3)

for everyt > 0.

Remark 5.1 This assumptions simply states that there exists a unique weak solution to (5.1).
Notice that we donot make any assumptions on the tightness of the transition probabilities
for (5.1). As a consequence, existence and uniqueness results for invariant measures can in
principle be deduced from Theorem 5.5 below even in cases where the semigroupeAt is not
compact.

In order to recover the formalism used in Section 2, we follow [DPZ92b] and introduce an
auxiliary Hilbert spaceŴ such that there exists a continuous embeddingι :W ↪→ Ŵ, which
is Hilbert-Schmidt. We can now setΩ = C0([0, 1], Ŵ), the space of continuouŝW-valued
functions that vanish at0, and defineP as the Wiener measure on̂W with covariance operator
ιι∗.
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We defineΦ :H×Ω → H as the map that solves (5.3) up to time1 given an initial condition
and a realization of the noise. This map is definedP-almost everywhere onΩ. We also denote
by Φt :H× Ω∞ → H the map that maps an initial condition and a realization of the noise onto
the solution of (5.3) after a timet.

Our next assumption is the existence of an appropriate Lyapunov functionV :

B2 There exists a measurable functionV :H → [0,∞] and constantsa < 1 and b, c, d > 0
such that

EωV (Φ(x, ω)) ≤ aV (x) + b ,

Eω

(
sup

0≤t≤1
V (Φt(x, ω))

)
≤ cV (x) + d , (5.4)

P({ω | V (Φ(x, ω)) = ∞}) = 0 ,

for everyx ∈ H. Furthermore,V dominates the norm inH in the sense that‖x‖ ≤
C(1 + V (x)) for some constantC.

As is Section 3, we definẽV (x, y) = V (x) + V (y).

Remark 5.2 TakeH equal to L2(O) for some regular bounded domainO ⊂ Rd, A a second-
order elliptic differential operator onO with sufficiently smooth coefficients, andF any poly-
nomial non-linearity of odd degree having the correct sign. The assumptionsB1 andB2 are
satisfied withV (x) = ‖x‖p

? for every powerp ≥ 1 and every “reasonable” norm‖ · ‖?, as long
asQ is “small” enough. (One can for example take for‖ · ‖? the L∞ norm or a Sobolev norm.)

We now turn to the binding construction for the problem (5.1). Take a functionG :H2 →W
and consider theH2-valued process (x, y) solving

dx(t) = Axdt+ F (x) dt+Qdω(t) , (5.5a)

dy(t) = Ay dt+ F (y) dt+QG(x, y) dt+Qdω(t) . (5.5b)

Notice that the realization ofω is the same for both components. The process (5.5) yields our
binding construction for (5.1). In order to give sense to (5.5b), we introduce theH-valued
process%(t) = y(t)− x(t) and we define it pathwise as the solution of the ordinary differential
equation

%̇ = A%+ F (x+ %)− F (x) +QG(x, x+ %) . (5.6)

We assume thatG is sufficiently regular to ensure the existence and uniqueness of global weak
solutions to (5.6) for almost every (with respect to the measure on pathspace induced byΦt)
continuous functionx : [0,∞) → H. This allows us todefinethe stochastic processy(t) by
y(t) = x(t) + %(t). We will denote by

→
Φt : X×X×Ω → X the map that solves (5.5b) up to time

t, given an initial condition forx andy, and a realization of the noise.
The above construction is invertible in the following sense. Consider theH2-valued process

dx̃(t) = Ax̃ dt+ F (x̃) dt−QG(x̃, ỹ) dt+Qdω̃(t) , (5.7a)

dỹ(t) = Aỹ dt+ F (ỹ) dt+Qdω̃(t) , (5.7b)
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where we give sense to the equation forx̃ as above by setting̃% = ỹ − x̃ and solving

˙̃% = A%̃+ F (ỹ)− F (ỹ − %̃) +QG(ỹ − %̃, ỹ) .

We denote by
←
Φt : X × X × Ω → X the map that solves (5.7a) up to timet, given an initial

condition forx̃ andỹ, and a realization of the noisẽω ∈ Ω. We see that (5.7) can be obtained
from (5.5) by the substitutiondω̃ = dω + G(x, y) dt and a renaming of the variables. This
observation yields the invertibility of the mapsψx→y defined in Eq. (5.12) below.

We will state two more assumptions to make sure that the conclusions of Theorem 4.1 hold.
First, we wantG to become small asx andy become close.

B3 There exists a constantC > 0 and exponentsα, β > 0 such that

‖G(x, y)‖2 ≤ C‖x− y‖α(1 + Ṽ (x, y))β , (5.8)

for everyx, y ∈ H.

The last assumption ensures that the processy(t) converges towardsx(t) for large times.

B4 There exist positive constantsC andγ such that the solutions of (5.5) and (5.7) satisfy

‖Φt(x, ω)− →
Φt(x, y, ω)‖ ≤ Ce−γt

(
1 + V (y) + sup

s≤t
V (Φs(x, ω))

)
, (5.9a)

‖←Φt(x, y, ω)− Φt(y, ω)‖ ≤ Ce−γt
(
1 + V (x) + sup

s≤t
V (Φs(y, ω))

)
, (5.9b)

for P∞-almost everyω ∈ Ω∞. Furthermore, there existsδ > 0 such that one has the
estimate

V (
→
Φt(x, y, ω)) ≤ C

(
1 + V (y) + sup

s≤t
V (Φs(x, ω))

)δ
, (5.10a)

V (
←
Φt(x, y, ω)) ≤ C

(
1 + V (x) + sup

s≤t
V (Φs(y, ω))

)δ
, (5.10b)

for P∞-almost everyω ∈ Ω∞ and everyt ≥ 0.

Remark 5.3 One important particular case is the choiceV (x) = ‖x‖p, where the powerp is
chosen in such a way that (5.9) is satisfied. Notice that in this case, the estimates (5.10) are a
straightforward consequence of (5.9).

The functionG is then only required to satisfy a bound of the type

‖G(x, y)‖2 ≤ C‖x− y‖α(1 + ‖x‖+ ‖y‖)q ,

with α andq some arbitrary positive exponents.
It is also possible to chooseV (x) = ‖x‖p

?, with ‖·‖? the norm of some Banach spaceB ⊂ H.
In this case, (5.9) with theB-norm replacing theH-norm in the left-hand side implies (5.10).
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Remark 5.4 An equivalent way of writing (5.9b) is

‖Φt(x, ω)− →
Φt(x, y, ω)‖ ≤ Ce−γt

(
1 + V (x) + sup

s≤t
V (

→
Φs(x, y, ω))

)
. (5.11)

The equation (5.11) will be more natural in our examples, but (5.9) is more symmetric and more
convenient for the proof of Theorem 5.5 below.

All these assumptions together ensure that exponential mixing takes place:

Theorem 5.5 LetA, F andQ be such that assumptionsB1 andB2 are satisfied. If there exists
a functionG :H2 → W such that assumptionsB3 and B4 hold, then the solution of (5.1)
possesses a unique invariant measureµ∗ and there exist constantsC, γ > 0 such that

‖Pn
x − µ∗‖L ≤ Ce−γn(1 + V (x)) .

Proof. It suffices to show that assumptionsA1–A5 hold. AssumptionA1 follows immediately
from AssumptionB2. In order to check the other assumptions, we define the various objects
appearing in the previous sections. We have already seen thatX = H, Ω = C0([0, 1], Ŵ), and
Φ is the solution of (5.1) at time1.

We define the functionW :H× Ω → [1,∞] by

W (x, ω) = sup
t∈[0,1]

V (Φt(x, ω)) .

The estimate (5.4) and the definition ensure thatW satisfies (3.3a) and (3.3b). The bound (5.10)
ensures that AssumptionA2 is also satisfied.

It remains to define the binding functionsψx→y and to compute the densitiesDn
x,y. According

to the constructions (5.5) and (5.7), we define for (x, y) ∈ H2 the binding functions

(ψx→y(ω))(t) = ω(t) +
∫ t

0
G(Φs(x, ω),

→
Φs(x, y, ω)) ds , (5.12a)

(ψx←y(ω))(t) = ω(t)−
∫ t

0
G(
←
Φs(x, y, ω),Φs(y, ω)) ds , (5.12b)

with t ∈ [0, 1]. It follows from the construction that these functions are each other’s inverse.
Furthermore, if we identifyΩn with C0([0, n], Ŵ) in a natural way, we see that the mapsΞn

x,y

introduced in (2.10) are obtained from (5.12) by simply lettingt take values in [0, n]. These
observations allow us to compute the densitiesDn

x,y(ω) by Girsanov’s theorem:

Lemma 5.6 The family of densitiesDn
x,y(ω) is given by

Dn
x,y(ω) = exp

(∫ n

0
G(
←
Φt(x, y, ω),Φt(y, ω)) dω(t)− 1

2

∫ n

0
‖G(. . .)‖2 dt

)
,

where the arguments ofG in the second term are the same as in the first term.
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Proof. If we can show that Girsanov’s theorem applies to our situation, then it precisely states
that

ψ∗x←yP̂
n = Pn ,

with P̂n(dω) = Dn
x,y(ω) Pn(dω), andDn

x,y(ω) defined as above. Applyingψ∗x→y to both sides of
the equality shows the result.

We now show that Girsanov’s theorem can indeed be applied. By [DPZ92b, Thm 10.14], it
suffices to verify that ∫

Ωn
Dn

x,y(ω) Pn(dω) = 1 . (5.13)

This can be achieved by a suitable cut-off procedure. Define forN > 0 the function

GN (x, y) =
{
G(x, y) if ‖G(x, y)‖ ≤ N ,
0 otherwise,

and define

Dn,N
x,y (ω) = exp

(∫ n

0
GN(

←
Φt(x, y, ω),Φt(y, ω)) dω(t)− 1

2

∫ n

0
‖GN (. . .)‖2 dt

)
.

It is immediate that (5.13) holds forDn,N
x,y . Furthermore, it follows from AssumptionB4 that

there exists a constantCN such thatDn,N
x,y (ω) = Dn

x,y(ω) on the set

ΓN = {ω ∈ Pn | Ṽ (
←
Φs(x, y, ω),Φs(y, ω)) < CN ∀s ∈ [0, n]} .

The setsΓN satisfy limN→∞ Pn(ΓN ) = 1 by (5.4) and (5.10b). This shows that (5.13) holds.
Notice that thea-priori bounds of AssumptionB4 were crucial in this step in order to apply
Girsanov’s theorem. The bound (5.8) alone could lead to exploding solutions for which Gir-
sanov’s theorem does not apply.

It is immediate that AssumptionA3 follows from AssumptionB4 and the definition of the norm
‖ · ‖L.

We now turn to the verification of AssumptionA4. Recalling the definition (3.5), we see
that in our case

Ay,k ⊂ By,k ≡ {ω ∈ Ω∞ | V (Φs(y, ω)) ≤ k(V (y) + s2) ∀s ≥ 0} .

As we see from the definition ofBy,k, a natural definition for a truncationGy,k of G (this time
the truncation additionally depends on time) is

Gy,k(x̃, ỹ, t) =
{
G(x̃, ỹ) if V (ỹ) ≤ k(V (y) + t2),
0 otherwise.

As above, we define

Dn,k
x,y (ω) = exp

(∫ n

0
Gy,k(

←
Φt(x, y, ω),Φt(y, ω), t) dω(t)− 1

2

∫ n

0
‖Gy,k(. . .)‖2 dt

)
.
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By definition,Dn,k
x,y (ω) = Dn

x,y(ω) for everyω ∈ By,k. Settingξ = δ(α + β), we thus have the
estimate∫

Ay,k

(Dn
x,y(ω))−2 Pn(dω) ≤

∫
By,k

(Dn,k
x,y (ω))−2 Pn(dω)

≤
(∫

By,k

exp
(
10
∫ n

0
‖Gy,k(

←
Φt(x, y, ω),Φt(y, ω), t)‖2 dt

)
Pn(dω)

)1/2

≤
(∫

By,k

exp
(
10
∫ n

0
Ce−γt

(
1 + V (x) + sup

s≤t
V (Φs(y, ω))

)ξ
dt
)

Pn(dω)
)1/2

≤ exp
(
C
∫ n

0
e−γt(1 + kṼ (x, y) + kt2)ξ dt

)
.

In this expression, we used the Cauchy-Schwarz inequality to go from the first to the second
line, and we used assumptionsB3 andB4 to go from the second to the third line. Since the
integral converges forn→∞, the bound is uniform inn and AssumptionA4 is verified.

The verification of AssumptionA5 is quite similar. Fix some positive constantK > 0 and
use again the cutoff function

GN (x̃, ỹ) =
{
G(x̃, ỹ) if ‖G(x̃, ỹ)‖2 ≤ N ,
0 otherwise.

The precise value ofN (as a function ofK) will be fixed later. We also fix a pair (x0, y0) ∈ H2

with Ṽ (x0, y0) ≤ K, a valuen > 0, and initial conditions (x, y) ∈ Qn
K(x0, y0). By the definition

of Qn
K(x0, y0), there exists an elementω̃ ∈ Ωn such that

(x, y) = (
←
Φn(x0, y0, ω̃),Φn(y0, ω̃)) , (5.14)

and such that
sup

s∈[0,n]
Ṽ (
←
Φs(x0, y0, ω̃),Φs(y0, ω̃)) ≤ K . (5.15)

Following the statement of AssumptionA5, we define the set

BK
x,y =

{
ω ∈ Ω

∣∣∣ sup
t∈[0,1]

Ṽ (
←
Φt(x, y, ω),Φt(y, ω)) ≤ K

}
,

which is equal in our setup to the set over which integration is performed in (3.9). Being now
accustomed to these truncation procedures, we define again

D(K)
x,y (ω) = exp

(∫ 1

0
GN(

←
Φt(x, y, ω),Φt(y, ω)) dω(t)− 1

2

∫ 1

0
‖GN (. . .)‖2 dt

)
.

By (5.14) and the cocycle property, we can write the integral in the above expression as∫ 1

0
GN(

←
Φn+t(x0, y0, ω̃ω),Φn+t(y0, ω̃ω)) dω(t) ,

whereω̃ω is the realization of the noise which is equal toω̃ for a timen and then toω for a time
1. Using thea-priori bound (5.15) as well as assumptionsB3 andB4, we thus see that there
exists a constantC such that the choice

N = Ce−αγn(1 +K)α+β ,
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ensures thatD(K)
x,y (ω) is equal toDx,y(ω) for ω ∈ BK

x,y.
We then have the estimate∫

BK
x,y

(1−Dx,y(ω))2 P(dω) ≤
∫
Ω
(1−D(K)

x,y (ω))2 P(dω)

=
∫
Ω
(D(K)

x,y (ω))2 P(dω)− 1

≤
(∫

Ω
exp

(
6
∫ 1

0
‖GN(

←
Φt(x, y, ω),Φt(y, ω))‖2 dt

)
P(dω)

)1/2

− 1

≤ exp(Ce−αγn(1 +K)α+β)− 1 .

If we taken ≥ β ln(1 + K)/γ, the exponent is bounded byC and there exists a constantC ′

such that ∫
BK

x,y

(1−Dx,y(ω))2 P(dω) ≤ C ′e−αγn(1 +K)α+β ,

thus validating AssumptionA5 with γ2 = αγ andζ = α+ β.
The proof of Theorem 5.5 is complete.

6 Examples

Numerous recent results show that the invariant measure for the 2D Navier-Stokes equation
(and also for other dissipative PDEs) is unique if a sufficient number of low-frequency modes
are forced by the noise [BKL00a, BKL00b, EMS01, Mat01, EL01, KS00, KS01, MY01]. These
results are not covered directly by Theorem 5.5, but some more work is needed. The reason is
that the setsAk

x defined in (3.5) are not the natural sets that allow to control the influence of the
low-frequency modes onto the high-frequency modes in the 2D Navier-Stokes equation.

On the other hand, our formulation of Theorem 5.5 makes it quite easy to verify that the
n-dimensional Ginzburg-Landau equation (in a bounded domain) shows exponential mixing
properties, if sufficiently many low-frequency modes are forced by the noise. We verify this in
the following subsection.

6.1 The Ginzburg-Landau equation

We consider the SPDE given by

du = (∆u+ u− u3) dt+Qdw(t) , u(0) = u0 , (6.1)

where the functionu belongs to the Hilbert space

H = L2([−L,L]n,R) ,

and∆ denotes the Laplacean with periodic boundary conditions. The symbolQdω(t) stands as
a shorthand for

Qdω(t) ≡
N∑

i=1

qiei dωi(t) ,

where{qi}N
i=1 is a collection of strictly positive numbers,ei denotes theith eigenvector of the

Laplacean, and theωi areN independent Brownian motions (for some finite integerN ). We
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also denote byλi the eigenvalue of∆ corresponding toei and we assume that they are ordered
by . . . ≤ λ2 ≤ λ1 ≤ 0. We will see that it is fairly easy to construct a binding functionG for
which the assumptions of the previous section hold withV (u) = ‖u‖, where‖ · ‖ denotes the
norm ofH.

In [DPZ96], it is shown that (6.1) possesses a unique mild solution for initial conditions
u0 ∈ L∞([−L,L]n). It is straightforward to extend this to every initial conditionu0 ∈ H, by
using the regularizing properties of the heat semigroup. Thus, AssumptionB1 holds and we
denote byPt

u the transition probabilities of the solution at timet starting fromu. We have the
following result:

Theorem 6.1 There exist positive constantsC andγ, and a unique measureµ∗ ∈ M1(H) such
that

‖Pt
u − µ∗‖L ≤ Ce−γt(1 + ‖u‖) , (6.2)

for everyu ∈ H and everyt > 0.

Proof. We verify that the assumptions of Theorem 5.5 hold. The bounds required for the veri-
fication of AssumptionB2 can be found in [Cer99, DPZ96], for example.

It remains to construct the forcingG :H2 → RN and to verify assumptionsB3 andB4. We
consider two copiesu1 andu2 of (6.1), with the noisedω replaced bydω + Gdt in the second
copy. We also denote by% = u2−u1 the difference process. It satisfies the differential equation

%̇ = ∆%+ %− %(u2
1 + u1u2 + u2

2) +QG(u1, u2) . (6.3)

We can project (6.3) onto the direction given byek. This yields

%̇k = (λk + 1)%k −
(
%(u2

1 + u1u2 + u2
2)
)

k
+ qkGk(u1, u2) ,

for k = 1, . . . , N and

%̇k = (λk + 1)%k −
(
%(u2

1 + u1u2 + u2
2)
)

k
,

for k > N . We chooseGk for k = 1, . . . , N as

Gk(u1, u2) = −2 + λk

qk
%k .

SinceGk can only be defined this way ifqk 6= 0, we use at this point the fact that the noise
acts directly and independently onevery unstable mode. This requirement can be significantly
weakened with the help of Theorem 5.5. We will focus next on more degenerate problems
which illustrate the power of our technique.

This choice satisfies AssumptionB3. With this choice, we can write down the evolution of
the norm of% as

d‖%‖2

dt
= 2〈%,A%〉 − 2〈%, %(u2

1 + u1u2 + u2
2)〉 ,

withA the linear operator given by adding up the contribution of∆+1 and the contribution ofG.
By the condition we imposed onN , there exists a constanta > 0 such that〈%,A%〉 ≤ −a‖%‖2.
Furthermore, one has

〈%, %(u2
1 + u1u2 + u2

2)〉 ≥ 0 .
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We thus have the differential inequality

d‖%‖2

dt
≤ −2a‖%‖2 ,

which implies that
‖%(t)‖ ≤ e−at‖%(0)‖ .

This implies by Remark 5.3 that AssumptionB4 is also satisfied. The proof of Theorem 6.1 is
complete.

6.2 A reaction-diffusion system

Consider the following reaction-diffusion system:

du = (∆u+ 2u+ v − u3) dt+ dw(t) ,

dv = (∆v + 2v + u− v3) dt ,
(6.4)

where the pair (u, v) belongs to the Hilbert space

H = Hu ⊕Hv = L2([−L,L],R)⊕ L2([−L,L],R) .

The symbol∆ again denotes the Laplacean with periodic boundary conditions, anddω is the
cylindrical Wiener process onHu (meaning that it is space-time white noise).

Notice that, because of the presence ofv, this system does not satisfy the assumptions stated
in the papers mentioned at the beginning of this section. In other words, even though the forcing
is infinite-dimensional, not all the determining modes for (6.4) are forced.

We take as our Lyapunov function

V (u, v) = ‖u‖∞ + ‖v‖∞ ,

with ‖ · ‖∞ the L∞ norm. As in the previous subsection, one can show that with this choice
of V , our problem satisfies assumptionsB1 andB2. We will now construct a binding function
G which satisfies assumptionsB4 andB3. We consider, as in (5.5), two copies (u1, v1) and
(u2, v2) of the system (6.4), but the noise is modified byG on the second copy. We also define
%u = u2 − u1 and%v = v2 − v1. We then have

%̇u = ∆%u + 2%u + %v − %u(u2
1 + u1u2 + u2

2) +G(u1, u2, v1, v2) ,

%̇v = ∆%v + 2%v + %u − %v(v2
1 + v1v2 + v2

2) .
(6.5)

Our construction ofG is inspired from the construction we presented in Section 1.1. We intro-
duce the variableζ = %u +3%v. Substituting this in (6.5), it defines the functionG if we impose
that the equation forζ becomes

ζ̇ = ∆ζ − ζ , (6.6)

so that‖ζ(t)‖2 ≤ ‖ζ(0)‖2e−t. Notice that the functionG achieving this identity satisfies a bound
of the type

‖G‖ ≤ C(‖%u‖+ ‖%v‖)(1 + ‖u1‖∞ + ‖u2‖∞ + ‖v1‖∞ + ‖v2‖∞)2 ,
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thus satisfying AssumptionB3. It remains to show that AssumptionB4 is satisfied. The equa-
tion for %v reads

%̇v = ∆%v − %v + ζ − %v(v2
1 + v1v2 + v2

2) .

Therefore, the norm of%v satisfies

‖%v(t)‖2 ≤ ‖%v(0)‖2e−t +
1 + ‖ζ(0)‖2

2
e−t .

This in turn implies, through the definition ofζ and the bound on‖ζ(t)‖, that a similar bound
holds for‖%u(t)‖. This shows that the bound (5.9) is satisfied. Similar estimates hold with the
L∞ norm replacing the L2 norm, and so AssumptionB4 is satisfied by Remark 5.3.

In fact, a straightforward computation, which can be found in [Cer99, Hai01, GM01] for
example, shows that in this example, one can get a uniform estimate on the Lyapunov function
V . More precisely, there exists a constantC such that for all initial conditionsx ∈ H,∫

H
V (y) Px(dy) ≤ C . (6.7)

Denoting byP∗
t the semigroup acting on measures generated by the solutions of (6.4), we thus

have:

Theorem 6.2 There exists a unique probability measureµ∗ ∈ M1(H) such thatP∗
t µ∗ = µ∗ for

everyt ≥ 0. Furthermore, there exist constantsC andγ such that

‖P∗
t ν − µ∗‖L ≤ Ce−γt , (6.8)

for everyν ∈ M1(H).

Proof. Combining (6.7) with the results of Theorem 4.1 and a computation similar to what
was done in the proof of Corollary 4.3, we get (6.8) for integer times. The generalization to
arbitrary times is straightforward, using the fact that the growth rate of the difference process
(%u, %v) (with G ≡ 0) can easily be controlled.

Remark 6.3 In fact, the dependence onu in the right-hand side of (6.2) can be removed simi-
larly by checking that an estimate of the type (6.7) is verified for the solutions of the stochastic
Ginzburg-Landau equation (6.1).

6.3 A chain with nearest-neighbour interactions

In the previous example, the noise acted on infinitely many degrees of freedom in a non-
degenerate way. As a consequence, one step was sufficient to transmit the noise to the entire
system. We will now look at a much more degenerate system, where the noise acts on onlyone
degree of freedom, although anarbitrary number of modes are linearly unstable.

Our model is given by

dx0 = (a2x0 + x1 − x3
0) dt+ dω ,

ẋk = (a2 − k2)xk + xk−1 + xk+1 − x3
k , k = 1, 2, . . . ,

(6.9)
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wherea ∈ R is an arbitrary constant. One should think of the deterministic part of (6.9) as a
very simple model for a dissipative PDE of the Ginzburg-Landau type. We will consider (6.9)
in the (real) Hilbert spaceH = `2 endowed with its canonical orthonormal basis{ek}∞k=0. It
is easy to verify that (6.9) possesses a unique solution. We denote again byP∗

t the semigroup
acting on measuresν ∈ M (`2) generated by (6.9). We will show

Theorem 6.4 For the problem (6.9), there exists a unique probability measureµ∗ ∈ M1(`2)
such thatP∗

t µ∗ = µ∗ for everyt ≥ 0. Furthermore, there exist constantsC andγ such that

‖P∗
t ν − µ∗‖L ≤ Ce−γt ,

for everyν ∈ M1(H).

Proof. We will take as our Lyapunov functionV (x) = ‖x‖p for some power ofp to be fixed
later. It is a straightforward task to verify that the dynamics generated by (6.9) does indeed
satisfy assumptionsB1 andB2 for this choice ofV .

We next show that a bound of the type (6.7) holds for the solutions of (6.9), thus yielding
the uniformity in the convergence towards the invariant measureµ∗. Let us define the process
y(t) ∈ `2 by y(t) = x(t)−ω(t)e0. This process then satisfies the following system of differential
equations:

ẏ0 = a2(y0 + ω) + y1 − (y0 + ω)3 ,

ẏ1 = (a2 − 1)y1 + y0 + y2 − y3
1 + ω ,

ẏk = (a2 − k2)yk + yk−1 + yk+1 − y3
k , k = 2, 3, . . . .

(6.10)

We denote by‖y‖∞ the norm given by supk |yk|. It follows from [Lun95] that (6.10) possesses
a strong solution for positive times. Furthermore, from (6.10) and the definition of the‖ · ‖∞-
norm, we see that there are constantsc1, c2 > 0 such that

D−‖y‖∞
Dt

≤ −c1‖y‖3
∞ + c2(1 + |ω(t)|3) , (6.11)

whereD−/Dt denotes the left-handed lower Dini derivative. A straightforward computation
shows that (6.11) implies that there exists a constantC such such that

‖y(1/2)‖∞ ≤ C sup
t∈[0,1/2]

(1 + |ω(t)|) ,

independently of the initial condition. In order to conclude the proof of the estimate (6.7), it
suffices to show that there exists a constantC such that

E‖y(1/2)‖ ≤ C(1 + ‖y(0)‖∞) .

This follows easily from the dissipativity of the nonlinearity inH and the fact that the semigroup
generated by the linear part of (6.10) is bounded from`∞ into `2.

It remains to verify that the assumptionsB1–B4 are indeed satisfied for some binding func-
tion G. This, together with the uniform bound obtained above, shows that the conclusions of
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Theorem 6.4 hold. As for the toy model presented in Section 1.1, we consider a processy ∈ `2
governed by the same equation as (6.9), but withdω replaced bydω + G(x, y) dt. We then
introduce the difference process% = y − x, which is given by the solution of

%̇0 = a2%0 + %1 − %0(x
2
0 + x0y0 + y2

0) +G(x, y) ,

%̇k = (a2 − k2)%k + %k+1 + %k−1 − %k(x2
k + xkyk + y2

k) .
(6.12)

The aim of the game is to find a functionG for which%(t) → 0 ast→∞. We can split (6.12)
into “low modes” and “high modes” by introducing

k∗ = inf{k > 0 | k2 − a2 ≥ 3} .

At the level of the Hilbert spacè2, we set̀ 2 = HL ⊕ HH , whereHL ≈ Rk∗ is generated by
e0, . . . , ek∗−1 andHH is its orthogonal complement. We denote by%L and%H the components
of % and byAH the restriction (as a symmetric quadratic form) of the linear part of (6.9) toHH .
It is by construction easy to see that

〈%H , AH%H〉 ≥ ‖%H‖2 .

As a consequence, we have for‖%H‖2 the following estimate:

‖%H(t)‖2 ≤ e−t‖%H(0)‖2 +
1

4

∫ t

0
et−s|ζ1(s)|2 ds , (6.13)

where we definedζ1 = %k∗−1. (The reason for renaming%k∗−1 this way will become clear
immediately.) It remains to constructG in such a way to get good estimates on‖%L(t)‖2. In
order to achieve this, we use again the same method as for the first toy model. The variableζ1
obeys the equation

ζ̇1 = c1%k∗−1 + %k∗ + %k∗−2 − %k∗−1(x
2
k∗−1 + xk∗−1yk∗−1 + y2

k∗−1) ,

with some constantc1 ∈ R. We thus introduce a new variableζ2 defined by

ζ2 = (c1 + 1)%k∗−1 + %k∗ + %k∗−2 − %k∗−1(x
2
k∗−1 + xk∗−1yk∗−1 + y2

k∗−1) .

It is important to notice two facts about this definition. The first is that it yields for|ζ1|2 the
estimate

|ζ1(t)|2 ≤ e−t|ζ1(0)|2 +
1

4

∫ t

0
et−s|ζ2(s)|2 ds . (6.14)

The second is thatζ2 can be written in the form

ζ2 = %k∗−2 +Q2(%, x, y) ,

whereQ2 is a polynomial depending only on components%i, xi andyi with i ≥ k∗ − 1, and
such that each of its terms contains at least one factor%i.

Now look at the equation foṙζ2. It is clear from the structure ofζ2 and from the structure of
the equations (6.9) and (6.12) that it can be written as

ζ̇2 = −ζ2 + ζ3 ,
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where
ζ3 = %k∗−3 +Q3(%, x, y) .

This time, the polynomialQ3 depends only on components with an indexi ≥ k∗ − 2. This
procedure can be iterated, yielding a whole family of variables

ζl = %k∗−l +Ql(%, x, y) , (6.15)

where theQl are polynomials depending only on indicesi ≥ k∗− l+ 1, and containing at least
one factor%i in each term. Furthermore, one gets for everyζl the estimate

|ζl(t)|2 ≤ e−t|ζl(0)|2 +
1

4

∫ t

0
et−s|ζl+1(s)|2 ds . (6.16)

Notice that (6.16) is valid forl < k∗. For l = k∗, we have

ζ̇k∗ = Qk∗+1(%, x, y) +G(x, y) . (6.17)

It thus suffices to chooseG in such a way that (6.17) becomes

ζ̇k∗ = −ζk∗ . (6.18)

Denoting byζ the vectorζ1, . . . , ζk∗, we get from (6.16) and (6.18) the estimate

‖ζ(t)‖2 ≤ Ce−γt‖ζ(0)‖2 , (6.19)

for anyγ ∈ (0, 1). Plugging this into (6.13) yields for‖%H‖ the estimate

‖%H(t)‖2 ≤ Ce−γt(‖%H(0)‖2 + ‖ζ(0)‖2)

≤ Ce−γt‖%(0)‖2(1 + ‖x(0)‖+ ‖y(0)‖)p ,

for some constantsC, γ andp. It remains to get an estimate on‖%L‖. From (6.19) and the
definition ofζ1, we get immediately

|%k∗−1(t)|2 ≤ Ce−γt‖%(0)‖2(1 + ‖x(0)‖+ ‖y(0)‖)p .

From the definition ofζ2, we get

|%k∗−2(t)|2 ≤ C
(
|ζ2(t)|2 + |Q2(%(t), x(t), y(t))|2

)
.

But we know thatQ2 only depends on components of%, x, andy with an indexi ≥ k∗ − 1.
These are precisely the components of% on which we already have an estimate. We thus get

|%k∗−2(t)|2 ≤ Ce−γt‖%(0)‖2(1 + ‖x(0)‖+ ‖y(0)‖+ ‖x(t)‖)p ,

for some other powerp. Here we used the fact thaty(t) = x(t) + %(t) to get rid of‖y(t)‖ in the
estimate. The same reasoning can be applied to%k∗−3, and so forth down to%0. We finally get

‖%L(t)‖2 ≤ Ce−γt‖%(0)‖2(1 + ‖x(0)‖+ ‖y(0)‖+ ‖x(t)‖)p , (6.20)

for some (large) power ofp. We thus verified (5.9a). The bound (5.9b) is obtained in the same
way, by noticing that we can as well get the estimate

‖%L(t)‖2 ≤ Ce−γt‖%(0)‖2(1 + ‖x(0)‖+ ‖y(0)‖+ ‖y(t)‖)p ,

instead of (6.20). The proof of Theorem 6.4 is complete.
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Remark 6.5 The whole construction is strongly reminiscent of what was done in [EPR99b]
to control a finite Hamiltonian chain of non-linear oscillators with nearest-neighbour coupling
driven by thermal noise at its boundaries.

Remark 6.6 The linearity of the nearest-neighbour coupling is not essential for our argument.
We could as well have replaced (6.9) by

dx0 = (a2x0 + V ′
2(x1 − x0)− V ′

1(x0)) dt+ dω ,

ẋk = (a2 − k2)xk + V ′
2(xk−1 − xk) + V ′

2(xk+1 − xk)− V ′
1(xk) ,

with V1 andV2 two polynomial-like functions,i.e.smooth functions such that

dnVi(x)
dxn

≈ xαi−n for |x| → ∞ ,

for someαi ≥ 2. Imposing the conditionV ′′
2 (x) ≥ c for somec > 0 yields an effective

coupling between neighbours at every point of the phase space. This is sufficient to apply our
construction.
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65–113.

[BKL00a] J. Bricmont, A. Kupiainen, and R. Lefevere,Ergodicity of the 2D Navier-Stokes Equations
with Random Forcing, Preprint, 2000.

[BKL00b] J. Bricmont, A. Kupiainen, and R. Lefevere,Exponential Mixing of the 2D Stochastic Navier-
Stokes Dynamics, Preprint, 2000.

[BKL00c] J. Bricmont, A. Kupiainen, and R. Lefevere,Probabilistic Estimates for the Two Dimensional
Stochastic Navier-Stokes Equations, J. Stat. Phys. (2000), no. 3–4, 743–756.

[CDF97] H. Crauel, A. Debussche, and F. Flandoli,Random Attractors, J. Dynam. Differential Equa-
tions9 (1997), no. 2, 307–341.

[Cer99] S. Cerrai,Smoothing Properties of Transition Semigroups Relative to SDEs with Values in
Banach Spaces, Probab. Theory Relat. Fields113(1999), 85–114.

[Col94] P. Collet,Non Linear Parabolic Evolutions in Unbounded Domains, NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci437(1994), 97–104.

[Col98] P. Collet,Stochasticity and Chaos, Probability Towards 2000, Lecture Notes in Statistics,
vol. 128, Springer, New York, 1998, pp. 137–150.

[CP89] J. Carr and R. Pego,Metastable Patterns in Solutions ofut = ε2uxx − f (u), Commun. Pure
Appl. Math.42 (1989), no. 5, 523–576.

[CP90] J. Carr and R. Pego,Invariant Manifolds for Metastable Patterns inut = ε2uxx−f (u), Proc.
Roy. Soc. Edinburgh116A (1990), no. 1-2, 133–160.
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