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Abstract

Data assimilation is formulated in a Bayesian context. This leads to
a sampling problem in the space of continuous time paths. By writing
down a density in path space, and conditioning on observations, it is pos-
sible to define a range of Markov Chain Monte Carlo (MCMC) methods
which sample from the desired distribution in path space, and thereby
solve the data assimilation problem. The basic building-blocks for the
MCMC methods that we concentrate on in this paper are stochastic par-
tial differential equations which are ergodic and whose invariant measure
gives the desired distribution in path space.

Two examples are given to show how data assimilation can be for-
mulated in a Bayesian fashion. The first is weather prediction, and the
second is Lagrangian data assimilation for oceanic velocity fields. Further-
more the relationship between the Bayesian approach outlined here and
the commonly used Kalman filter-based techniques, prevalent in practice,
is discussed. A simple paedogogical example is studied to illustrate the
application of Bayesian sampling to data assimilation concretely. Finally
a range of open mathematical and computational issues, arising from the
Bayesian approach, are outlined.

1 Introduction

In this paper we describe a Bayesian approach to data assimilation, in which
a continuous time path (time-dependent solution of a differential equation) is
viewed as a random object whose distribution, conditional on observations,
solves the data assimilation problem. In this context the key concept which
needs elucidation is that of a probability density in the space of paths. Once
this density is defined, and a conditional density is written down which incorpo-
rates observations, the complete Bayesian framework can be employed to sample
in the space of continuous time paths.

We believe that this viewpoint may be useful for two primary reasons: firstly
the Bayesian approach gives, in some sense, the correct theoretical answer to
the data assimilation problem and other approaches which have been adopted,
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such as ensemble Kalman filtering, should be evaluated by their ability to ap-
proximate the posterior distribution in the Bayesian approach; secondly it will
be necessary to use the Bayesian approach given here to sample any data assimi-
lation problems which are bi- or multi-modal (for which Kalman-based methods
will necessarily fail – see [12].)

The paper is organized as follows. In section 2 we formulate a number of
variants of the data assimilation problem abstractly in the language of stochas-
tic differential equations (SDEs). We give two concrete examples, arising in
oceanic and atmospheric science, to motivate the abstract setting. Section 3
outlines the Bayesian approach to data assimilation that we will highlight in
this paper, and introduces the central idea of probability density in path space.
In subsection 3.2 we describe a generalization of the Langevin equation to path
space, leading to nonlinear parabolic stochastic PDEs (SPDEs) which, when
statistically stationary, sample from the distribution which solves the data as-
similation problem; we also look at a second order Langevin equation, leading to
a nonlinear damped stochastic wave equation. Subsection 3.3 describes another
sampling strategy that might be used to sample path space, namely a Hybrid
Monte Carlo technique. In section 4 we discuss MCMC methods in path space
in general terms, discusing how Metropolis-Hastings ideas might be used to im-
prove the Langevin and Hybrid methods from the previous section, and more
generally to explore a wide range of sampling techniques. In section 5 we relate
the Bayesian approach adopted here to other commonly used methods of data
assimilation. Section 6 contains a paedogogical example of Lagrangian data as-
similation, based on a Gaussian random field model of a velocity field, included
to illustrate the Bayesian methodology. Section 7 concludes with a description
of a number of open mathematical and computational questions arising from
adopting the Bayesian viewpoint on data assimilation.

The SPDE based approach to sampling continuous time paths was intro-
duced in [24] and is subsequently analyzed in [8] and [9], building on analysis in
[26]. (For paths conditioned only on knowing the value of the path at two points
in time – bridges – the SPDE based approach was simultaneously written down
in [18].) The SPDE approach generalizes the Langevin equation to sampling in
infinite dimensions. The Langevin approach to sampling in finite dimensions
is outlined in the book [19] where it is shown how to use a discretization of
the Langevin equation, in conjunction with a Metropolis-Hastings accept-reject
criterion, to create a Markov chain Monte Carlo (MCMC) method. The infinite
dimensional version of this MCMC method, arising when sampling the space
of paths, is studied in [21]. Hybrid Monte Carlo methods, which are widely
used in molecular dynamics, were generalized to sample in path space in [1],
as were Langevin based methods; however that paper proceeded by discretizing
the evolution equations to be sampled and then applying a finite dimensional
sampling method. It is our view that it is conceptually and algorithmically
preferable to formulate the sampling problem in infinite dimensions (the space
of paths). It is conceptually important to know that the infnite dimensional
problem makes sense mathematically. Once this infinite dimensional problem
is defined, it is algorithmically important to find an efficient way of approx-
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imating it by discretization. Discretizing first, so that the sampling problem
is never written down in continuous time, and then sampling, may lead to a
non-optimal approximation of the desired infinite dimensional problem; see the
end of section 3.

The subject of Brownian motion and stochastic calculus is described in [10],
whilst texts on SDEs include [5] and [16]. The subject of SPDEs is covered in
the text [3].

2 The Framework

In this section we write down a precise mathematical framework into which a
variety of data assimilation problems can be cast. We start with two motiva-
tional examples, and then express them precisely in the language of SDEs. We
finish with some technical assumptions and notation that will be used in the
remainder of the paper.

2.1 Motivation

When discretized in space, a typical model for numerical weather prediction is
an ODE system with dimension of order 108. If modelling error and external
forcing are modelled as temporal white noise then an equation of the form (2.1)
below is obtained. In this context the state x represents the nodal values of
the unknown quantities such as velocity, temperature, pressure and so forth.
The observations which we wish to assimilate are then various projections of
the state x, possibly different at different times, and may be viewed as subject
to independent Gaussian white noises. We thus obtain observations y of the
form (2.3) below.

A second motivational example is that of Lagrangian data assimilation in
the ocean (see [12] for work in this direction). For expository purposes consider
trying to make inference about a 2D velocity field governed by the noisy incom-
pressible Navier-Stokes equations, by means of Lagrangian particle trajectories.
We write the velocity field v(z, t) as an (incompressible) trigonometric series

v(z, t) =
∑

k∈K
ik⊥xk(t) exp{ik · z}.

The vector x made up of the xk then satisies an equation like (2.1) below. Now
imagine a set of Lagrangian drifters, indexed by j, and with positions yj(t)
governed by

dyj

dt
= v(yj , t) + σj

dWj

dt
.

From the representation of the velocity field it is clear that

v(z, t) = χ(x(t), z)

for some function χ and hence that the collection of Lagrangian drifters satisfy
an equation of the form (2.2) below. If data from the drifters (obtained by GPS
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for example) is assumed to be essentially continuous in time then we may view
(2.2) as giving the observational data y which is to be assimilated. (It is also
possible to formulate Lagrangian data assimilation in the case where the drifters
are observed only at discrete times).

2.2 Mathematical Setting

We now abstract these two examples of data assimilation. The signal that we
wish to determine, and into which we wish to assimilate observational data, is
assumed to satisfy the SDE

dx

dt
= f(x) + γ

dWx

dt
, (2.1)

where f determines the systematic part of the evolution, and dWx/dt is Gaussian
white noise perturbing it. We assume that x(0) is distributed with density ζ.
Because Wx is a random function, the SDE defines a probability distribution on
the space of continuous time paths. In data assimilation the ultimate objective
is to probe this distribution, conditional on some form of observation.

If the observation is in continuous time then we denote it by y(t) and assume
that it too satisfies an SDE. This has the form

dy

dt
= g(x, y) + σ

dWy

dt
, (2.2)

where g determines the systematic evolution of the observation, which depends
on the signal x, and dWy/dt is a standard Gaussian white noise perturbing it,
independent of the white noise dWx/dt.

If the observation is in discrete time then we assume that we observe y =
(y1, . . . , yJ) satisfying

yj = hj(x(tj)) + σjξj , j = 1, . . . , J. (2.3)

Here hj determines which function of the signal x is observed, the ξj are standard
i.i.d. Gaussian random variables and the σj determine their covariances; both
the hj and σj are indexed by j because the nature of the observations may differ
at different times. We assume that the ξj are independent of the white noise
driving (2.1). The times {ti} are ordered and assumed to satisfy

0 < t1 < t2 < · · · < tJ ≤ T.

(Any observation at t = 0 is incorporated into ζ.)

2.3 Assumptions and Notation

In equation (2.1) we have f : Rd → Rd, γ ∈ Rd×d and Wx is standard d−dimensional
Brownian motion. We assume that γ is invertible and we define Γ = γγT . In
equation (2.2) we have g : Rd × Rm → Rm, σ ∈ Rm×m and Wy is standard
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m−dimensional Brownian motion, independent of Wx. We assume that σ is in-
vertible and we define Σ = σσT . In equation (2.3) we have hj : Rd → Rm and
σj ∈ Rm×m. The ξj are assumed independent of Wx. We also assume that σj is
invertible and define Σj = σjσT

j .
For any positive-definite n × n covariance matrix A we define the inner-

product on Rn given by
〈a, b〉A = aT A−1b

and the induced norm ‖ · ‖2
A = 〈·, ·〉A. This notation is used immediately in the

next section, with A equal to Γ, Σ or Σj , in order to define a probability density
in path space.

3 Path Space Sampling and (S)PDEs

3.1 Density in Path Space

In order to develop a Bayesian approach to path sampling for {x(t)}t∈[0,T ],
conditional on observations, we need to define a probability density in path
space. To this end we define the following functionals:

I(x) =
∫ T

0
[
1
2
‖dx

dt
− f(x)‖2

Γ +
1
2
∇x · f(x)]dt,

J(x, y) =
∫ T

0
[
1
2
‖dy

dt
− g(x, y)‖2

Σ +
1
2
∇y · g(x, y)]dt,

JD(x, y) =
J∑

j=1

1
2
‖yj − hj(x(tj))‖2

Σj
.

(Note that where the observation y appears in J it is a function, and where it
appears in JD it is a finite vector.)

Here I(x) is known as the Onsager-Machlup functional for (2.1) and the
unconditional density for paths x solving (2.1) may be thought of as being
proportional to (see [7])

Q(x) := q(x)ζ(x(0))

where
q(x) := exp{−I(x)}

and ζ is the density of the initial condition for x(t). Similarly I(x) + J(x, y) is
the Onsager-Machlup functional for (2.1) and (2.2), with unconditional density
for paths x, y found by exponentiating the negative of this functional. Hence, by
Bayes rule, the conditional density for paths x solving (2.1), given observation of
y solving (2.2), may be thought of as being proportional to Q(x) := q(x)ζ(x(0))
where

q(x) := exp{−I(x) − J(x, y)}.
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Similarly the conditional density for paths x solving (2.1), given observation of
y solving (2.3), may be thought of as being proportional to Q(x) := q(x)ζ(x(0))
where

q(x) := exp{−I(x) − JD(x, y)}.

Note that, in all cases, q maps the Sobolev space of functions with square
integrable first derivative H1([0, T ]) into the positive reals R+. The observations
y parameterize q(x).

In the following two sections we will introduce continuous and discrete time
Markov chains whose invariant measure samples from densities on path space
such as the functionals Q(x) defined above. This will lead to SPDEs in subsec-
tion 3.2 and a Markov chain constructed through a PDE with random initial
data in subsection 3.3.

Defining these SPDEs will require calculation of the variational derivatives
of I(x), J(x, y) and JD(x, y) with respect to x. We list these derivatives here.
To this end it is useful to define

F(x) =
1
2
‖f(x)‖2

Γ +
1
2
∇x · f(x)

H(x) = Γ−1df(x) − df(x)TΓ−1,

where df : Rd → Rd×d is the Jacobian of f . We also use dg : Rd ×Rm → Rm×d

to denote the Jacobian of g with respect to x and dhj : Rd → Rm×d to denote
the Jacobian of hj with respect to x. Then the required variational derivatives
are:

δI

δx
= −Γ−1 d2x

dt2
+ H(x)

dx

dt
+ ∇xF(x)

δJ

δx
= −dg(x, y)TΣ−1[

dy

dt
− g(x, y)] +

1
2
∇x{∇y · g(x, y)},

δJD

δx
= −

J∑

j=1

dh(x(tj))TΣ−1
j [yj − hj(x(tj))]δ(t − tj).

Notice that the last derivative is made up of point sources at the tj . If tJ = T
then the jump induced by the delta function modifies the boundary condition
at t = T in the (S)PDEs that we write down in the next two sections – compare
(3.3) and (3.4). Otherwise the delta jumps are in the interior of the domain for
the (S)PDEs.

One important observation here is that the presence of the second term in
F , namely the divergence of f , is something which has caused some controversy
in the physics literature. A least squares definition of the density, based on
Gaussian white noise, misses the term. Even if it is included, its magnitude
– the factor 1

2 – has been queried [13]. The analysis in [9, 18] and numerical
experiments [24] are unequivocal that its presence is necessary and that the
pre-factor of 1

2 is the correct choice.
It is also because of this second term in F that we have concerns about

sampling methods which first discretize the SDE (2.1) and then apply standard
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finite dimensional sampling techniques ([1]). Such an approach can lead to a
very indirect and numerically unsatisfactory approximation of the second term
(see [24]). For this reason we strongly recommend employing the methodology
outlined in this paper: namely to formulate an infinite dimensional sampling
method in path space, and then approximate it.

3.2 Langevin SPDEs Which Sample Path Space

The basic idea of Langevin methods is to construct a potential given by the
gradient of the logarithm of the target density and to consider motion in this
potential, driven by noise [19, 20]. In our case the desired target density is
Q(x) ∝ q(x)ζ(x(0)). Ignoring the boundary conditions (i.e. ζ) for a moment,
we obtain the following (proposal) SPDE for x(t, s) :

∂x

∂s
=

δ ln q(x)
δx

+
√

2
∂W

∂s
, (s, t) ∈ (0,∞) × (0, T ). (3.1)

Here s is an algorithmic time introduced to to facilitate sampling in the space
of paths, parameterized by real time t, and ∂W

∂s is a white noise in (t, s). The
variational derivative of ln q(x) gives a second order differential operator in t and
so the PDE is of reaction-diffusion type, subject to noise. The details of the
SPDE depend upon whether the sampling of x is unconditional, or subject to
observations y; the latter may be in discrete or continuous time. The previous
section implicitly calculates the derivative of ln q(x) in each of these three cases,
through the variational derivatives of I(x), J(x) and JD(x).

To find boundary conditions for the SPDE we argue in the standard fashion
adopted in the calculus of variations. Notice that

ln Q(x +∆x) = lnQ(x) + (
δ

δx
ln Q(x),∆x) + O(‖∆x‖2)

where (·, ·) is the L2([0, T ]) inner-product and ‖ · ‖ an appropriate norm. Now

(
δ

δx
ln Q(x),∆x) = (

δ

δx
ln q(x),∆x)

+〈dx(0)
dt

− f(x(0)) + Γ∇x ln ζ(x(0),∆x(0)〉Γ − 〈dx(T )
dt

− f(x(T )),∆x(T )〉Γ.

The first term on the right hand side gives the contribution to the derivative
of Q(x) appearing in the interior of the SPDE. Equating the second and third
terms to zero, for all possible variations ∆x, we obtain the following boundary
conditions for the SPDE:

∂x

∂t
− f(x) + Γ∇x ln ζ(x) = 0, t = 0, (3.2)

∂x

∂t
− f(x) = 0, t = T. (3.3)

The resulting SPDE (3.1)–(3.3) then has the desired equilibrium distribution.
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When the observations are in discrete time and the last observsation coin-
cides with the last point at which we wish to sample x (so that tJ = T ) the
delta function at t = tJ in the variational derivative of ln q(x) does not appear
in the interior t ∈ (0, T ) and instead modifies the second boundary condition to
read

∂x

∂t
− f(x) − ΓdhJ(x)TΣ−1

J [yJ − hJ(x)] = 0, t = T. (3.4)

Note that the case h(x) = x and yJ = x+ gives, in the limit where ΣJ → 0, the
Dirichlet boundary condition x = x+ at t = T. Choosing ζ to be a Gaussian
centred at x−, and taking the limit of variance to zero, will also give a Dirichlet
boundary condition x = x− at t = 0. These Dirichlet boundary conditions
arise naturally in some applications of path sampling when bridges are studied
[18, 24].

By generalizing the second order Langevin method we obtain the fol-
lowing (proposal) SPDE for x(t, s) :

∂2x

∂s2
+ ι

∂x

∂s
=

δ ln q(x)
δx

+
√

2ι
∂W

∂s
, (s, t) ∈ (0,∞) × (0, T ), (3.5)

with boundary conditions (3.2), (3.3). Here ι > 0 is an arabitry positive pa-
rameter whose value may be optimized to improve sampling. This SPDE is a
damped driven wave equation which yields the desired equilbrium distribution,
when marginalized to x. The equilibrium distribution gives white noise for the
momentum variable ∂x

∂s and this is hence natural initial data for the momentum
variable.

It is also of interest to discuss preconditioned Langevin equations. Let
G denote an arbitrary positive definite self-adjoint operator on the space of paths
and consider the following SPDEs derived from (3.1) and (3.5) respectively:

∂x

∂s
= G δ ln q(x)

δx
+
√

2G ∂W

∂s
, (s, t) ∈ (0,∞) × (0, T )

and

G−1 ∂
2x

∂s2
+ ι

∂x

∂s
= G δ ln q(x)

δx
+
√

2ιG ∂W

∂s
, (s, t) ∈ (0,∞) × (0, T ).

The boundary conditions depend on G – some examples are given in [9] and
[21]. Formally both these SPDEs preserve the desired invariant measure, for
any choice of G.

The simplest way to use any of the Langevin SPDEs described above to probe
the desired (conditional) distribution on path space is as follows. Given some
function ϕ : C([0, T ], Rd) → R (such as the maximum value along the path, or
the value of |x(t)|2 at some time point t = τ) solve one of the Langevin SPDEs
numerically thereby generating a sequence xn(t) ≈ x(t, n∆s) (in practice this
will need to be discretized along the path in t as well as in s). For M sufficiently
large, the collection {xn(t)}n≥M form approximate samples from the desired
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distribution in path space. Hence, as N → ∞, the average

1
N

N−1∑

n=0

ϕ(xn(t)). (3.6)

will converge, by ergodicity, to an approximation of the average of ϕ in the
desired conditional distribution. (The fact that we obtain an approximation,
rather than the exact stationary value, results from discretization of the SPDE
in t, s – see [23, 25].) The role of G is to accelerate convergence as N → ∞.

3.3 Hybrid Monte Carlo Methods Which Sample Path
Space

By generalizing the Hybrid Monte Carlo method we obtain the following
Markov chain xn(t). Setting ι = 0 in the SPDE (3.5) gives the PDE

∂2x

∂s2
=

δ ln q(x)
δx

, (s, t) ∈ (0,∞) × (0, T ). (3.7)

The boundary conditions are again (3.2), (3.3). This equation defines a solution
operator

M : (x0, y0) → (x(τ),
∂x

∂s
(τ))

mapping initial conditions to the solution at time τ. With the notation

Px : (x, y) → x

we construct the Markov chain

xn+1 = PxM(xn, ξn)

where the ξn are chosen to be i.i.d. spatial white noises. This yields the desired
equilibrium distribution. The formula (3.6) can again be used to probe the
desired conditional distribution. Each step of the Markov chain requires the
solution of a nonlinear wave equation over an interval of length τ in s. Because
numerical approximation of the wave equation (and hence M) can lead to errors
the formula (3.6) will in practice again only give an approximation of the true
ergodic limit as N → ∞. Pre-conditioning can also be used in the context of
the Hybrid Monte Carlo method, replacing (3.7) by

∂2x

∂s2
= G2 δ ln q(x)

δx
, (s, t) ∈ (0,∞) × (0, T ).

Again, G is used to accelerate convergence to stationarity.
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4 Path Space Sampling and Other MCMC Meth-
ods

The Langevin SPDEs and the Hybrid Monte Carlo methods both give rise to
Markov chains which, if solved exactly (which is impossible in almost all practi-
cal situations), sample exactly from the desired distribution in their stationary
measure. They are all examples of MCMC methods. But there is no reason
to restrict sampling methods to these particular MCMC methods and in this
section we briefly outline directions which might be fruitfully pursued to get
improved sampling.

4.1 Metropolis-Hastings

In practice the MCMC methods in the previous section require numerical ap-
proximation of an (S)PDE in (s, t). This will incur errors and hence the station-
ary distribution will only be sampled approximately. The errors arising from
integration in s can be corrected by means of a Metropolis-Hastings accept-
reject criterion (see [15, 19]). Furthermore, optimizing the choice of time-step
in s can improve efficiency of the algorithm – we outline this below.

To apply the Metropolis-Hastings idea in path space, first discretize the
path {x(t)} giving rise to a vector x at the grid points. In the case of discrete
observations this grid should ideally be chosen to include the observation times
{tj}. The signal {y(t)} in the case of continuous time observations should also
be discretized on the same grid.

The target density Q(x) can then be approximated, using finite differences
on the integrals, to define a finite-dimensional target density QD(x). By dis-
cretizing the (S)PDEs in the previous section on the same grid of points in t,
as well as discretizing in s, we obtain a proposal distribution. Moves according
to this proposal distribution (discretized (S)PDE) are then accepted or rejected
with the Metropolis-Hastings probability leading to a Markov chain with invari-
ant density QD(x). Thus the effect of error introduced by integrating in s is
removed; and the error due to approximation in t is controlled by the approxi-
mation of Q(x) by QD(x).

If a small time-step is used in s then the proposal distribution is not far from
the current position of the Markov chain. This is known as a local proposal and
for these there is a well-developed theory of optimality for the resulting MCMC
methods [20]. The variance of an estimator in a Markov chain is given by the
integrated autocorrelation function. Roughly speaking, very small steps in s
are undesirable because the correlation in the resulting Markov chain is high,
leading to high variance in estimators, which is inefficient; on the other hand,
large steps in s lead to frequent rejections, which is also inefficient, again because
correlation between steps is high when rejections are included. Choosing the
optimal scaling of the step in s, with respect to the number of discretization
points used along the path {x(t)}, is an area of current research activity [21],
building on the existing studies of MCMC methods in high dimensions [20]. In
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the context of Metropolis-Hastings, good choices for the preconditioner G are
ones which approximately equilibrate the convergence rates in different Fourier
modes of the distribution. With this in mind, an interesting choice for G is a
Green’s operator for − d2

dt2 with homogeneous boundary conditions (see [9], [21],
[1]).

If τ is small in the Hybrid Monte Carlo method then it too gives rise to a
local proposal distribution. However, larger τ will lead to better decorrelation,
and hence efficiency, if the rejection rate is not too large. Hence it is of interest
to study optimal choices for τ , as a function of the number of discretization
points, for this problem. The Hybrid Monte Carlo method was introduced and
studied for discretizations of the path sampling problem in [1] where choices for
the operator G were also discussed.

4.2 Global Moves

Langevin methods have a potential problem for the sampling of multi-modal
distributions, namely that they can get stuck in a particular mode of the dis-
tribution for long times, because of the local (in state space) nature of the
proposals. The Hybrid Monte Carlo method goes some way to ameliorating
this issue as it allows free vibrations in the Hamiltonian given by the logarithm
of the target density, and this is known to be beneficial in many finite dimen-
sional sampling problems. However it is undoubtedly the case that sampling in
path space will frequently be accelerated if problem specific global moves are
incorporated into the proposal disctributions. This is an open area for investi-
gation. In the context of bridges the paper [11] contains some ideas that might
form the basis of global proposal moves; but these are not likely to extend to
data assimilation directly.

5 Relationship to Other Approaches

The first observation to make in this context is that, in the language of signal-
processing, the Bayesian method proposed here is performing smoothing, not
filtering. This is because we sample from x(s), s ∈ [0, T ] given the entire set
of observations on [0, T ], whereas filtering would sample from x(s) given only
observations in [0, s]. Filtering is appropriate in applications where the data is
on-line. But for off-line data, smoothing is quite natural. Off-line situations arise
when performing parameter estimation, for example, and also in Lagrangian
data assimilation for oceanic velocity fields.

The standard method for performing filtering for nonlinar SDEs conditional
on observations is via the Zakai equation and its generalizations. This is a
linear partial differential equation for the probability density of the signal, con-
ditional on observations. It is thus in the form of a Fokker-Planck equation,
driven by noise (the observation). Informally it may be derived by employing
the unconditional Fokker-Planck equation for (2.1) as a prior, and incorporat-
ing the observations via Bayes law; the Markovian structure of the signal and
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observations allows filtering to be performed sequentially 0 → T . Smoothing
can then be performed by means of a backward sweep, using a similar linear
SPDE, incorporating data in reverse time T → 0. See [22], Chapter 6, and the
bibliographical Notes on Chapter 6, for further details and references.

A significant problem with use of the Zakai equation in the context of high
dimensional problems (d . 1) is that the independent variables are in Rd and
it is notoriously difficult to solve PDEs in high dimensions. Particle filters are a
good tool for approximation of the Zakai equation in moderate dimension, but
perform poorly in very high dimension.

Weather prediction leads to d of order 108 and solution of the Zakai equa-
tion by particle filters is impractical. In this context two simplifications are
usually introduced. The first is to use the extended Kalman filter [2, 14] which
proceeds by linearising the system and propagating a Gaussian model for the
uncertainty; it is hence necessary to update the mean in Rd and the covariance
matrix in Rd×d sequentially, a task which is significantly easier than solving
the Zakai equation. However even this approximation is impractical for large
d and further approximations, primarily to effect dimension reduction on the
covariance matrix, are performed; this leads to the local ensemble Kalman filter
[17].

The approach we advocate in this paper is conceptually quite different from
those based on the Zakai equation, and its Gaussian approximations. Instead
of trying to sample from the probability distribution of the signal, at each point
in time, by sequential means, we try to sample an entire path of the signal,
from a distribution on path space. This leads to a nonlinear SPDE in one space
dimension (t) and one time-like dimension indexing the sampling (s). The high
dimension d enters as dimension of the dependent variable x(t, s) which solves
the SPDE; in contrast the Zakai equation has dimension d in the independent
variable. The nonlinear SPDE proposed here hence has a considerable com-
putational advantage over methods based on the Zakai equation, at least for
problems which cannot be approximated in a Gaussian fashion.

6 Paedagogical Example

We discuss a simple example motivated by Lagrangian data assimilation. We
use the example to illustrate the use of the (first order) Langevin SPDE for
sampling conditional paths of (2.1). Consider a one dimensional velocity field
of the form

v(y, t) = x1(t) + x2(t) sin(y) + x3(t) cos(y)

where the xi(t) are Ornstein-Uhlenbeck processes solving

dxi

dt
= −αxi + γ

dWx,i

dt
. (6.1)

We assume that the particles are initially stationary and independent so that
each xi(0) is distributed as N (0, γ2/2α), with density ζ(x) ∝ exp{−αx2/γ2}.
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We study the question of making inference about the paths xi(t) from the
observation of m drifters {yi}m

i=1 moving in the velocity field, and subject to
random forcing idealized as white noise (e.g. molecular diffusion):

dyi

dt
= v(yi, t) + σ

dWy,i

dt
. (6.2)

Here the Wx,i and Wy,i are independent standard Brownian motions. The initial
conditions for the yi are i.i.d. random variables drawn from the distribution
N (0, 2π).

Writing y = (y1, . . . , ym)T and Wy = (Wy,1, . . . , Wy,m)T we obtain

dy

dt
= h(y)x + σ

dWy

dt
, (6.3)

where h : Rm → Rm×3, σ ∈ R+.
In this case the Langevin SPDE (3.1)–(3.3) is hence

∂x

∂s
=

1
γ2

∂2x

∂t2
− α2

γ2
x +

1
σ2

h(y)T [
dy

dt
− h(y)x]

− 1
2
∇y · h(y)T +

√
2
∂W

∂s
, (s, t) ∈ (0,∞) × (0, T )

∂x

∂t
= + αx, (s, t) ∈ (0,∞) × {0}

∂x

∂t
= − αx, (s, t) ∈ (0,∞) × {T }

x =x0, (s, t) ∈ 0 × [0, T ].

Because the SPDE is linear, the mean x̄ in the stationary measure is found
by removing the derivative in s and the noise to obtain

1
γ2

d2x̄

dt2
− α2

γ2
x̄ − 1

σ2
h(y)T h(y)x̄ = − 1

σ2
h(y)T dy

dt
+

1
2
∇y · h(y)T , t ∈ (0, T ),

dx̄

dt
= +αx̄, t = 0,

dx̄

dt
= −αx̄, t = T.

Note that if σ / min(γ, 1) then, formally, the equation for the mean is domi-
nated by the normal equations

h(y)T [
dy

dt
− h(y)x̄] ≈ 0

which arise from trying to solve the over-determined equation (6.3) for x, when
the noise is ignored. But when noise is present, however small, dy

dt exists only
as a distribution (it has the regularity of white noise) and so the second order
differential operator in x, which incorporates prior information on x, is required
to make sense of the mean.
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Our numerical experiments are conducted as follows. We set α = γ =
σ = 1 and generated a single path for each xi, i = 1, 2, 3 solving (6.1) on the
interval t ∈ [0, 10], using stationary initial conditions as described above. We
also generated the trajectories of 500 drifters yi moving according to (6.2), with
initial conditions drawn from a Gaussian distrbution as described above. We
then chose m drfiter paths, with m = 5, 50 and 500 respectively, and solved the
Langevin SPDE to sample from the distribution of the xi. We integrated over
100 algorithmic time units in s and approximated the mean of the xi, together
with one standard deviation, using (3.6). We also calculated the mean directly
by solving the boundary value problem for x̄. We emphasize that the signals xi

are not available to the Langevin SPDE or the boundary value problem: only
information about the drifters yi is used to reconstruct the xi. The signals are
shown in the following figures so that the reconstruction of the signal may be
judged.

The results are shown in Figures 1, 2 and 3, corresponding to m = 5, 50 and
500 respectively. In each figure we consider x1 in the top panel, x2 in the middle
and x3 at the bottom. The actual signal xi is the non-smooth curve whilst the
mean of the desired conditional distribution, found by solving the equation for
x̄, is the smooth curve. The shaded bands show an estimate of one standard
deviation about the mean, with both mean and standard deviation estimated
by time averaging solution of the Langevin SPDE in s.

The figures illustrate two facts, one a property of the path sampling proce-
dure we propose in this paper, the second a property of the desired conditional
distribution for this data assimilation problem. The first fact is this: because
the true mean x̄ lies in the middle of the shaded band, it is clear that the es-
timate of the mean, calculated through time-averaging, is accurate at s = 100.
The second fact is this: as m is increased our ability to recover the actual signal
increases; this is manifest in the fact that the mean gets closer to the signal,
and the standard deviation bounds get tighter.

To give some insight into how long the Langevin SPDE has to be integrated
to obtain accurate time averages, we generated data analogous to that in Fig-
ure 1, but only integrated to time s = 10. The results are shown in Figure 4.
The fact that x̄ no longer lies in the middle of the shaded bands, at least for
some parts of the paths, indicates that the time average of the path has not
converged to the mean value in the stationary distribution.

7 Challenges

The Bayesian framework for data assimilation outlined here presents a number
of significant scientific challenges. We outline some of these here, breaking the
challenges down into three categories: applications, mathematical and compu-
tational.
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Figure 1: Reconstruction of the xi solving (6.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 5 drifters are used.

7.1 Applications

• In the context of short term weather prediction, the Gaussian Kalman
filter approximation appears quite effective; it would be interesting to
quantify this by comparing it with the Bayesian approach described here.

• In the context of Lagrangian data assimilation for oceans, it would be of
interest to use the methodology proposed here to study the multi-modal
problems which often arise quite naturally, and for which the extended
Kalman filter diverges.

• For both weather prediction and ocean modelling it would be of interest to
incorporate the methodology proposed here for the purposes of parameter
estimation. In this context the paths of (2.1) are treated as missing data
which are sampled to enable estimation of parameters appearing in (2.1)
itself. A Gibbs sampler ([19]) could be used to alternate between the
missing data and the parameters.

• There are many other potential applications of this methodology in chem-
istry, physics, electrical engineering and econometrics, for example.

7.2 Mathematical

• The SPDEs which arise as the formal infinite dimensional Langevin equa-
tions, and the related PDE which arises in the hybrid Monte Carlo method,
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Figure 2: Reconstruction of the xi solving (6.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 50 drifters are used.

all lead to significant problems in analysis concerned with the existence,
uniqueness, ergodicity and rate of convergence to stationarity. Some of
these issues have been resolved for particular forms of nonlinearity in (2.1)
and (2.2) (see [8], [9]) primarily for vector fields f , and g in the case of
continuous time observations, which are combinations of gradients and
linear vector fields.

• For non-gradient vector fields the presence of the term H(x)∂x
∂t causes

particlar problems in the development of a theory for the SPDE as, when
the solution operator for the linear part of the Langevin SPDE is applied
to it, a definition of stochastic integral is required. Numerical evidence
as well as the derivation of I(x) by means of the Girsanov formula, sug-
gests that this should be a Stratonovich-type centred definition, but the
mathematical analysis remains to be developed.

• In some applications the underlying path to be sampled arises from an
SPDE itself: i.e. equation (2.1) is itself an SPDE; it would be of interest
to derive the relevant Langevin SPDE here, in which the variable t would
appear as a spatial variable, in addition to the spatial derivatives already
appearing in (2.1).

• We have assumed for simplicity that white noise affects all components of
the signal and observation equations; relaxing this assumption is natural
in some applications, and it would be of interest to find the relevant SPDEs
for sampling in this case.
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Figure 3: Reconstruction of the xi solving (6.1), together with one standard
deviation bounds, on s ∈ [0, 100]; 500 drifters are used.

7.3 Computational

• Within the context of Langevin algorithms it would be of interest to study
choices of the pre-conditioner G, and discretization method for the SPDE,
which lead to efficient algorithms; efficiency in this context should be
measured through the integrated auto-correlation function which quan-
tifies the fluctuations in estimates of the form (3.6), for expectations of
ϕ(x(·)) with respect to the desired conditional measure [20].

• Similar considerations apply to Hybrid Monte Carlo methods, and the
choice of pre-conditioner.

• It is also of interest to compare first order and second order Langevin based
methods with one another and with the Hybrid Monte Carlo method, once
good pre-conditioners have been found. See [1] for a step in this direction.

• The use of other MCMC methods to sample the desired probability mea-
sures on path space should also be explored. It is common practical ex-
perience that, whilst Langevin type methods are provably efficient within
the context of methods using local (in state space) proposals [20], greater
speed-ups can often be obtained by incorporating additional global moves,
based on problem specific knowledge.

• The issue of how to discretize the SPDE is also non-trivial. In particular
for non-gradient vector fields in (2.1), (2.2), the term H(x)∂x

∂t needs to be
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Figure 4: Reconstruction of the xi solving (6.1), together with one standard
deviation bounds, on s ∈ [0, 10]; 5 drifters are used. Note that the estimate of
the mean (the middle of the shaded bands) is not always close to the actual
mean (the smooth curve). This should be contrasted with Figure 1 which is on
a longer interval in algorithmic time s.

discretized carefully (numerical evidence suggest that centred differencing
is necessary) essentially for the same reasons that the SPDE theory is hard
to develop in this case.

• If the dimension d is high then, since the number of dependent variables
in the (S)PDEs proposed here will scale like d, techniques are required to
reduce the dimensionality for sampling; multiscale methods are likely to
be useful in this context [6]. Some interesting work in this direction, using
relative entropy, may be found in [4].
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