Regularity Structures

Martin Hairer

University of Warwick

Seoul, August 14, 2014

What are regularity structures?

Algebraic structures providing "skeleton" for analytical "models" mimicking properties of Taylor polynomials: (T, G, A). Model: $T \times \mathbf{R}^d \to \mathcal{D}'$.

Polynomial model: $(P, x_0) \mapsto P(\cdot - x_0)$.

Algebraic properties: Group G acting by reexpansions on $P \in T$:

$$P(x - x_0) = P((x - x_1) + x_1 - x_0) = (\Gamma_{x_0, x_1} P)(x - x_1) .$$

For every $\Gamma \in G$, $\deg(\Gamma P - P) < \deg P$ and $\Gamma PQ = (\Gamma P)(\Gamma Q)$.

Analytical properties: Homogeneous monomials vanish at base point with order (speed) equal to their degree.

What are regularity structures?

Algebraic structures providing "skeleton" for analytical "models" mimicking properties of Taylor polynomials: (T, G, A). Model: $T \times \mathbf{R}^d \to \mathcal{D}'$.

Polynomial model: $(P, x_0) \mapsto P(\cdot - x_0)$.

Algebraic properties: Group G acting by reexpansions on $P \in T$:

$$P(x - x_0) = P((x - x_1) + x_1 - x_0) = (\Gamma_{x_0, x_1} P)(x - x_1) .$$

For every $\Gamma \in \mathbf{G}$, $\deg(\Gamma P - P) < \deg P$ and $\Gamma PQ = (\Gamma P)(\Gamma Q)$.

Analytical properties: Homogeneous monomials vanish at base point with order (speed) equal to their degree.

Another example

T: linear span of 1 (degree 0) and W (degree $\frac{1}{2}$).

Model: For some fixed Hölder- $\frac{1}{2}$ function W, set

$$(a\mathbf{1}+b\mathbf{W},x_0)\mapsto a+b\big(W(\cdot)-W(x_0)\big)$$
.

Group G:
$$\Gamma_{x_0,x_1} \mathbf{W} = \mathbf{W} + (W(x_0) - W(x_1))\mathbf{1}.$$

 $\Gamma_{x_0,x_1} \mathbf{1} = \mathbf{1}$

Important property: For a given regularity structure, one can have many different models. (Here: given by choice of W.)

Another example

T: linear span of 1 (degree 0) and W (degree $\frac{1}{2}$).

Model: For some fixed Hölder- $\frac{1}{2}$ function W, set

$$(a\mathbf{1}+b\mathbf{W},x_0)\mapsto a+b\big(W(\cdot)-W(x_0)\big)$$
.

Group G:
$$\Gamma_{x_0,x_1} \mathbf{W} = \mathbf{W} + (W(x_0) - W(x_1))\mathbf{1}.$$

 $\Gamma_{x_0,x_1} \mathbf{1} = \mathbf{1}$

Important property: For a given regularity structure, one can have many different models. (Here: given by choice of W.)

What are they good for?

Construct robust solution theories for very singular SPDEs. Examples:

$$\begin{aligned} \partial_t h &= \partial_x^2 h + (\partial_x h)^2 + \xi , & (d = 1) \\ \partial_t \Phi &= \Delta \Phi - \Phi^3 + \xi , & (d = 2, 3) \\ \partial_t u &= \Delta u + g_{ij}(u) \partial_i u \, \partial_j u + \sigma(u) \eta , & (d = 2, 3) \\ \partial_t v &= \partial_x^2 v + f(v) + \sigma(v) \xi . & (d = 1) \end{aligned}$$

Here ξ is space-time white noise and η is spatial white noise.

KPZ (h): universal model for interface propagation. Dynamical Φ_3^4 : universal model for dynamics of near mean-field phase transition models near critical temperature. PAM $(u \text{ with } g = 0 \text{ and } \sigma(u) = u)$: universal model for weakly killed diffusions.

What are they good for?

Construct robust solution theories for very singular SPDEs. Examples:

$$\begin{aligned} \partial_t h &= \partial_x^2 h + (\partial_x h)^2 + \xi , & (d = 1) \\ \partial_t \Phi &= \Delta \Phi - \Phi^3 + \xi , & (d = 2, 3) \\ \partial_t u &= \Delta u + g_{ij}(u) \partial_i u \, \partial_j u + \sigma(u) \eta , & (d = 2, 3) \\ \partial_t v &= \partial_x^2 v + f(v) + \sigma(v) \xi . & (d = 1) \end{aligned}$$

Here ξ is space-time white noise and η is spatial white noise.

KPZ (*h*): universal model for interface propagation. Dynamical Φ_3^4 : universal model for dynamics of near mean-field phase transition models near critical temperature. PAM (*u* with g = 0 and $\sigma(u) = u$): universal model for weakly killed diffusions.

What are they good for?

Try to define distribution " $\eta(x) = \frac{1}{|x|} - C\delta(x)$ ".

Problem: Integral of 1/|x| diverges, so we need to set " $C = \infty$ " to compensate!

Formal definition:

$$\eta_{\chi}(\phi) = \int_{\mathbf{R}} \frac{\phi(x) - \chi(x)\phi(0)}{|x|} dx ,$$

for some smooth compactly supported cut-off χ with $\chi(0) = 1$. Yields one-parameter family $c \mapsto \eta_c$ of models, but no canonical "choice of origin" for c.

Try to define distribution " $\eta(x) = \frac{1}{|x|} - C\delta(x)$ ".

Problem: Integral of 1/|x| diverges, so we need to set " $C = \infty$ " to compensate!

Formal definition:

$$\eta_{\chi}(\phi) = \int_{\mathbf{R}} \frac{\phi(x) - \chi(x)\phi(0)}{|x|} dx ,$$

for some smooth compactly supported cut-off χ with $\chi(0) = 1$. Yields one-parameter family $c \mapsto \eta_c$ of models, but no canonical "choice of origin" for c.

Try to define distribution " $\eta(x) = \frac{1}{|x|} - C\delta(x)$ ".

Problem: Integral of 1/|x| diverges, so we need to set " $C = \infty$ " to compensate!

Formal definition:

$$\eta_{\chi}(\phi) = \int_{\mathbf{R}} \frac{\phi(x) - \chi(x)\phi(0)}{|x|} \, dx \; ,$$

for some smooth compactly supported cut-off χ with $\chi(0) = 1$. Yields one-parameter family $c \mapsto \eta_c$ of models, but no canonical "choice of origin" for c.

Try to define distribution " $\eta(x) = \frac{1}{|x|} - C\delta(x)$ ".

Problem: Integral of 1/|x| diverges, so we need to set " $C = \infty$ " to compensate!

Formal definition:

$$\eta_{\chi}(\phi) = \int_{\mathbf{R}} \frac{\phi(x) - \chi(x)\phi(0)}{|x|} \, dx \; ,$$

for some smooth compactly supported cut-off χ with $\chi(0) = 1$. Yields one-parameter family $c \mapsto \eta_c$ of models, but no canonical "choice of origin" for c.

- 1. If nonlinear term is $\sigma(u) \xi$, Itô calculus can be used. Relies crucially on martingale property, broken by regularisation.
- 2. KPZ and 1D stochastic Burgers can be treated using controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
- 3. Solve $\partial_t Z = \partial_x^2 Z + Z \xi$ (SHE) and interpret $h = \log Z$ as KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).
- 4. Dynamical Φ_2^4 model: write $\Phi = \Psi + \tilde{\Phi}$ with Ψ solution to linear equation and derive well-posed equation for $\tilde{\Phi}$ (Albeverio-Röckner '91 / Da Prato-Debussche '03).
- 5. Alternative theory using paraproducts can in principle treat KPZ and Φ_3^4 (Gubinelli-Imkeller-Perkowski '14).

- 1. If nonlinear term is $\sigma(u) \xi$, Itô calculus can be used. Relies crucially on martingale property, broken by regularisation.
- 2. KPZ and 1D stochastic Burgers can be treated using controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
- 3. Solve $\partial_t Z = \partial_x^2 Z + Z \xi$ (SHE) and interpret $h = \log Z$ as KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).
- 4. Dynamical Φ_2^4 model: write $\Phi = \Psi + \tilde{\Phi}$ with Ψ solution to linear equation and derive well-posed equation for $\tilde{\Phi}$ (Albeverio-Röckner '91 / Da Prato-Debussche '03).
- 5. Alternative theory using paraproducts can in principle treat KPZ and Φ_3^4 (Gubinelli-Imkeller-Perkowski '14).

- 1. If nonlinear term is $\sigma(u) \xi$, Itô calculus can be used. Relies crucially on martingale property, broken by regularisation.
- 2. KPZ and 1D stochastic Burgers can be treated using controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
- 3. Solve $\partial_t Z = \partial_x^2 Z + Z \xi$ (SHE) and interpret $h = \log Z$ as KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).
- 4. Dynamical Φ_2^4 model: write $\Phi = \Psi + \tilde{\Phi}$ with Ψ solution to linear equation and derive well-posed equation for $\tilde{\Phi}$ (Albeverio-Röckner '91 / Da Prato-Debussche '03).
- 5. Alternative theory using paraproducts can in principle treat KPZ and Φ_3^4 (Gubinelli-Imkeller-Perkowski '14).

- 1. If nonlinear term is $\sigma(u) \xi$, Itô calculus can be used. Relies crucially on martingale property, broken by regularisation.
- 2. KPZ and 1D stochastic Burgers can be treated using controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
- 3. Solve $\partial_t Z = \partial_x^2 Z + Z \xi$ (SHE) and interpret $h = \log Z$ as KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).
- 4. Dynamical Φ_2^4 model: write $\Phi = \Psi + \tilde{\Phi}$ with Ψ solution to linear equation and derive well-posed equation for $\tilde{\Phi}$ (Albeverio-Röckner '91 / Da Prato-Debussche '03).
- 5. Alternative theory using paraproducts can in principle treat KPZ and Φ_3^4 (Gubinelli-Imkeller-Perkowski '14).

- 1. If nonlinear term is $\sigma(u) \xi$, Itô calculus can be used. Relies crucially on martingale property, broken by regularisation.
- 2. KPZ and 1D stochastic Burgers can be treated using controlled rough paths by Lyons / Gubinelli (H. '11 / H. '13).
- 3. Solve $\partial_t Z = \partial_x^2 Z + Z \xi$ (SHE) and interpret $h = \log Z$ as KPZ (Hopf '50 / Cole '51 / Bertini-Giacomin '97).
- 4. Dynamical Φ_2^4 model: write $\Phi = \Psi + \tilde{\Phi}$ with Ψ solution to linear equation and derive well-posed equation for $\tilde{\Phi}$ (Albeverio-Röckner '91 / Da Prato-Debussche '03).
- 5. Alternative theory using paraproducts can in principle treat KPZ and Φ_3^4 (Gubinelli-Imkeller-Perkowski '14).

Central limit theorem: Gaussian universality

KPZ strong Universality conjecture: At large scales, the space-time fluctuations of a large class of 1 + 1-dimensional interface propagation model are described by a universal Markov process H, self-similar with exponents 1 - 2 - 3:

$$\lambda^{-1}H(\lambda^2 x, \lambda^3 t) \stackrel{\text{law}}{=} H(x, t) \ .$$

Exactly solvable models: Borodin, Corwin, Quastel, Sasamoto, Spohn, etc. Yields partial characterisation of limiting "KPZ fixed point" (*H*): agrees with experimental evidence (Takeuchi & AI).

Central limit theorem: Gaussian universality

KPZ strong Universality conjecture: At large scales, the space-time fluctuations of a large class of 1 + 1-dimensional interface propagation model are described by a universal Markov process H, self-similar with exponents 1 - 2 - 3:

$$\lambda^{-1}H(\lambda^2 x, \lambda^3 t) \stackrel{\text{\tiny law}}{=} H(x, t) \; .$$

Exactly solvable models: Borodin, Corwin, Quastel, Sasamoto, Spohn, etc. Yields partial characterisation of limiting "KPZ fixed point" (*H*): agrees with experimental evidence (Takeuchi & AI).

Central limit theorem: Gaussian universality

KPZ strong Universality conjecture: At large scales, the space-time fluctuations of a large class of 1 + 1-dimensional interface propagation model are described by a universal Markov process H, self-similar with exponents 1 - 2 - 3:

$$\lambda^{-1}H(\lambda^2 x, \lambda^3 t) \stackrel{\text{\tiny law}}{=} H(x, t) \ .$$

Exactly solvable models: Borodin, Corwin, Quastel, Sasamoto, Spohn, etc. Yields partial characterisation of limiting "KPZ fixed point" (H): agrees with experimental evidence (Takeuchi & AI).

Central limit theorem: Gaussian universality

Spohn, etc. Yields partial characterisation of limiting "KPZ fixed point" (H): agrees with experimental evidence (Takeuchi & AI).

Heuristic picture

Universality for symmetric interface fluctuation models: scaling exponents 1-2-4, Gaussian limit. Heuristic picture of the evolution of interface models under "zooming out":

KPZ equation: red line.

Heuristic picture

Universality for symmetric interface fluctuation models: scaling exponents 1-2-4, Gaussian limit. Heuristic picture of the evolution of interface models under "zooming out":

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h_{\varepsilon}(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Height function of WASEP (Bertini-Giacomin '97). Accumulation points satisfy weak version of KPZ for certain generalisations of WASEP (Jara-Gonçalves '10).

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h_{\varepsilon}(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Height function of WASEP (Bertini-Giacomin '97). Accumulation points satisfy weak version of KPZ for certain generalisations of WASEP (Jara-Gonçalves '10).

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h_{\varepsilon}(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Height function of WASEP (Bertini-Giacomin '97).

Accumulation points satisfy weak version of KPZ for certain generalisations of WASEP (Jara-Gonçalves '10).

Conjecture: the KPZ equation is the only model on the "red line".

Conjecture: Let h_{ε} be any "natural" one-parameter family of asymmetric interface models with ε denoting the strength of the asymmetry such that propagation speed $\approx \sqrt{\varepsilon}$.

As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h_{\varepsilon}(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions h to the KPZ equation.

Height function of WASEP (Bertini-Giacomin '97). Accumulation points satisfy weak version of KPZ for certain generalisations of WASEP (Jara-Gonçalves '10).

Class of models:

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \sqrt{\varepsilon} P(\partial_x h_{\varepsilon}) + F$$
,

with P an even polynomial, F a Gaussian field with compactly supported correlations $\rho(t,x)$ s.t. $\int \rho = 1.$

Theorem (H., Quastel '14, in progress) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to (KPZ)_{λ} with λ depending in a non-trivial way on all coefficients of P.

Class of models:

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \sqrt{\varepsilon} P(\partial_x h_{\varepsilon}) + F$$
,

with P an even polynomial, F a Gaussian field with compactly supported correlations $\rho(t, x)$ s.t. $\int \rho = 1$.

Theorem (H., Quastel '14, in progress) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\text{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Class of models:

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \sqrt{\varepsilon} P(\partial_x h_{\varepsilon}) + F$$
,

with P an even polynomial, F a Gaussian field with compactly supported correlation Nonlinearity $\lambda(\partial_x h)^2$

Theorem (H., Quastel '14, in progress) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\text{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Class of models:

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \sqrt{\varepsilon} P(\partial_x h_{\varepsilon}) + F$$
,

with P an even polynomial, F a Gaussian field with compactly supported correlations $\rho(t, x)$ s.t. $\int \rho = 1$.

Theorem (H., Quastel '14, in progress) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\text{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Class of models:

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \sqrt{\varepsilon} P(\partial_x h_{\varepsilon}) + F$$
,

with P an even polynomial, F a Gaussian field with compactly supported correlations $\rho(t, x)$ s.t. $\int \rho = 1$.

Theorem (H., Quastel '14, in progress) As $\varepsilon \to 0$, there is a choice of $C_{\varepsilon} \sim \varepsilon^{-1}$ such that $\sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$ converges to solutions to $(\text{KPZ})_{\lambda}$ with λ depending in a non-trivial way on all coefficients of P.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$,

with ξ_{ε} an $\varepsilon\text{-approximation}$ to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \rightarrow 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = \frac{1}{2} \int P''(u) \,\mu(du) \,, \qquad C_{\varepsilon} = \frac{1}{\varepsilon} \int P(u) \,\mu(du) + \mathcal{O}(1) \,,$$

with μ a Gaussian measure, explicitly computable variance.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$.

with ξ_{ε} an $\varepsilon\text{-approximation}$ to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \rightarrow 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = \frac{1}{2} \int P''(u) \,\mu(du) \,, \qquad C_{\varepsilon} = \frac{1}{\varepsilon} \int P(u) \,\mu(du) + \mathcal{O}(1) \,,$$

with μ a Gaussian measure, explicitly computable variance.

Case $P(u) = u^4$

Write
$$\tilde{h}_{\varepsilon}(x,t) = \sqrt{\varepsilon}h(\varepsilon^{-1}x,\varepsilon^{-2}t) - C_{\varepsilon}t$$
. Satisfies
 $\partial_t \tilde{h}_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon (\partial_x \tilde{h}_{\varepsilon})^4 + \xi_{\varepsilon} - C_{\varepsilon}$.

with ξ_{ε} an ε -approximation to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as $\varepsilon \to 0$: no small gradients! Heuristic: gradients have $\mathcal{O}(1)$ fluctuations but are small on average over large scales... General formula:

$$\lambda = \frac{1}{2} \int P''(u) \,\mu(du) \,, \qquad C_{\varepsilon} = \frac{1}{\varepsilon} \int P(u) \,\mu(du) + \mathcal{O}(1) \,,$$

with μ a Gaussian measure, explicitly computable variance.

Rewrite general equation in integral form as

$$H = \mathcal{P}\big(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xi\big) ,$$

with ${\cal E}$ an abstract "integration operator" of order 1, ${\cal P}$ convolution with heat kernel.

Find two-parameter lift of noise $\xi_{\varepsilon} \mapsto \Psi_{\alpha,c}(\xi_{\varepsilon})$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \xi_{\varepsilon}$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \xi_{\varepsilon}.$

Rewrite general equation in integral form as

$$H = \mathcal{P}\big(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xi\big) ,$$

with ${\cal E}$ an abstract "integration operator" of order 1, ${\cal P}$ convolution with heat kernel.

Find two-parameter lift of noise $\xi_{\varepsilon} \mapsto \Psi_{\alpha,c}(\xi_{\varepsilon})$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \xi_{\varepsilon}$$

= $\partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \xi_{\varepsilon}.$

Rewrite general equation in integral form as

Rewrite general equation in integral form as

$$H = \mathcal{P}\big(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xi\big) ,$$

with ${\cal E}$ an abstract "integration operator" of order 1, ${\cal P}$ convolution with heat kernel.

Find two-parameter lift of noise $\xi_{\varepsilon} \mapsto \Psi_{\alpha,c}(\xi_{\varepsilon})$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \xi_{\varepsilon} = \partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \xi_{\varepsilon} .$$

Rewrite general equation in integral form as

$$H = \mathcal{P}\big(\mathcal{E}(\mathscr{D}H)^4 + a(\mathscr{D}H)^2 + \Xi\big) ,$$

with ${\cal E}$ an abstract "integration operator" of order 1, ${\cal P}$ convolution with heat kernel.

Find two-parameter lift of noise $\xi_{\varepsilon} \mapsto \Psi_{\alpha,c}(\xi_{\varepsilon})$ so that $h = \mathcal{R}H$ solves

$$\partial_t h = \partial_x^2 h + \alpha H_4(\partial_x h, c) + a H_2(\partial_x h, c) + \xi_{\varepsilon} = \partial_x^2 h + \alpha (\partial_x h)^4 + (a - 6\alpha c)(\partial_x h)^2 + (3\alpha c^2 - ac) + \xi_{\varepsilon} .$$

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).

- 1. Strong Universality without exact solvability???
- 2. Hyperbolic / dispersive problems??
- 3. Obtain convergence results for discrete models (H.-Maas-Weber '12; Mourrat-Weber, in progress).
- 4. Non-Gaussian noise / fully nonlinear continuum models.
- 5. Control over larger scales \Rightarrow KPZ fixed point.
- 6. Characterisation of possible renormalisation maps. When does it yield a modified equation in closed form?
- 7. Systematic way of choosing renormalisation procedure and proving convergence (H.-Quastel; Bruned-H.-Zambotti, in progress).