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What are regularity structures?

Algebraic structures providing “skeleton” for analytical “models”
mimicking properties of Taylor polynomials: (T ,G,A).
Model: T ×Rd → D′.

Polynomial model: (P, x0) 7→ P ( · − x0).

Algebraic properties: Group G acting by reexpansions on P ∈ T :

P (x− x0) = P ((x− x1) + x1 − x0) =
(
Γx0,x1P

)
(x− x1) .

For every Γ ∈ G, deg(ΓP − P ) < degP and ΓPQ = (ΓP )(ΓQ) .

Analytical properties: Homogeneous monomials vanish at base
point with order (speed) equal to their degree.
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Another example

T : linear span of 1 (degree 0) and W (degree 1
2).

Model: For some fixed Hölder-12 function W , set

(a1 + bW, x0) 7→ a+ b
(
W (·)−W (x0)

)
.

Group G: Γx0,x1W = W +
(
W (x0)−W (x1)

)
1.

Γx0,x11 = 1

Important property: For a given regularity structure, one can have
many different models. (Here: given by choice of W .)
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What are they good for?

Construct robust solution theories for very singular SPDEs.
Examples:

∂th = ∂2xh+ (∂xh)2 + ξ , (d = 1)

∂tΦ = ∆Φ− Φ3 + ξ , (d = 2, 3)

∂tu = ∆u+ gij(u)∂iu ∂ju+ σ(u)η , (d = 2, 3)

∂tv = ∂2xv + f(v) + σ(v)ξ . (d = 1)

Here ξ is space-time white noise and η is spatial white noise.

KPZ (h): universal model for interface propagation. Dynamical
Φ4
3: universal model for dynamics of near mean-field phase

transition models near critical temperature. PAM (u with g = 0
and σ(u) = u): universal model for weakly killed diffusions.
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Cf. “A Theory of Regularity Structures” (H. ’14)



Example of renormalisation

Try to define distribution “η(x) = 1
|x| − Cδ(x)”.

Problem: Integral of 1/|x| diverges, so we need to set “C =∞”
to compensate!

Formal definition:

ηχ(φ) =

∫
R

φ(x)− χ(x)φ(0)

|x|
dx ,

for some smooth compactly supported cut-off χ with χ(0) = 1.
Yields one-parameter family c 7→ ηc of models, but no canonical
“choice of origin” for c.

Approximation: 1/(ε+ |x|)− 2| log ε| δ(x) converges to ηc for
some c.
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Previous notions of solution

1. If nonlinear term is σ(u) ξ, Itô calculus can be used. Relies
crucially on martingale property, broken by regularisation.

2. KPZ and 1D stochastic Burgers can be treated using
controlled rough paths by Lyons / Gubinelli (H. ’11 / H. ’13).

3. Solve ∂tZ = ∂2xZ + Z ξ (SHE) and interpret h = logZ as
KPZ (Hopf ’50 / Cole ’51 / Bertini-Giacomin ’97).

4. Dynamical Φ4
2 model: write Φ = Ψ + Φ̃ with Ψ solution to

linear equation and derive well-posed equation for Φ̃
(Albeverio-Röckner ’91 / Da Prato-Debussche ’03).

5. Alternative theory using paraproducts can in principle treat
KPZ and Φ4

3 (Gubinelli-Imkeller-Perkowski ’14).
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Universality

Central limit theorem: Gaussian universality

KPZ strong Universality conjecture: At large scales, the space-time
fluctuations of a large class of 1 + 1-dimensional interface
propagation model are described by a universal Markov process H,
self-similar with exponents 1− 2− 3:

λ−1H(λ2x, λ3t)
law
= H(x, t) .

Exactly solvable models: Borodin, Corwin, Quastel, Sasamoto,
Spohn, etc. Yields partial characterisation of limiting “KPZ fixed
point” (H): agrees with experimental evidence (Takeuchi & Al).
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Heuristic picture

Universality for symmetric interface fluctuation models: scaling
exponents 1− 2− 4, Gaussian limit. Heuristic picture of the
evolution of interface models under “zooming out”:

Gauss KPZ

KPZ equation: red line.
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Weak Universality conjecture

Conjecture: the KPZ equation is the only model on the “red line”.

Conjecture: Let hε be any “natural” one-parameter family of
asymmetric interface models with ε denoting the strength of the
asymmetry such that propagation speed ≈

√
ε.

As ε→ 0, there is a choice of Cε ∼ ε−1 such that√
εhε(ε

−1x, ε−2t)− Cεt converges to solutions h to the KPZ
equation.

Height function of WASEP (Bertini-Giacomin ’97).
Accumulation points satisfy weak version of KPZ for certain
generalisations of WASEP (Jara-Gonçalves ’10).
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Weak universality result for KPZ

Class of models:

∂thε = ∂2xhε +
√
εP (∂xhε) + F ,

with P an even polynomial, F a Gaussian field with compactly
supported correlations ρ(t, x) s.t.

∫
ρ = 1.

Theorem (H., Quastel ’14, in progress) As ε→ 0, there is a
choice of Cε ∼ ε−1 such that

√
εh(ε−1x, ε−2t)− Cεt converges to

solutions to (KPZ)λ with λ depending in a non-trivial way on all
coefficients of P .

Remark: Convergence to KPZ with λ 6= 0 even if P (u) = u4!!
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Case P (u) = u4

Write h̃ε(x, t) =
√
εh(ε−1x, ε−2t)− Cεt. Satisfies

∂th̃ε = ∂2xhε + ε(∂xh̃ε)
4 + ξε − Cε ,

with ξε an ε-approximation to white noise.

Fact: Derivatives of microscopic model do not converge to 0 as
ε→ 0: no small gradients! Heuristic: gradients have O(1)
fluctuations but are small on average over large scales... General
formula:

λ =
1

2

∫
P ′′(u)µ(du) , Cε =

1

ε

∫
P (u)µ(du) +O(1) ,

with µ a Gaussian measure, explicitly computable variance.
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Main step in proof

Rewrite general equation in integral form as

H = P
(
E(DH)4 + a(DH)2 + Ξ

)
,

with E an abstract “integration operator” of order 1, P
convolution with heat kernel.

Find two-parameter lift of noise ξε 7→ Ψα,c(ξε) so that h = RH
solves

∂th = ∂2xh+ αH4(∂xh, c) + aH2(∂xh, c) + ξε

= ∂2xh+ α(∂xh)4 + (a− 6αc)(∂xh)2 + (3αc2 − ac) + ξε .

Show that Ψε,1/ε(ξε) converges to same limit as Ψ0,1/ε(ξε)!
(Actually more complicated: logarithmic sub-divergencies...)
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Outlook

Many open questions remain:

1. Strong Universality without exact solvability???

2. Hyperbolic / dispersive problems??

3. Obtain convergence results for discrete models
(H.-Maas-Weber ’12; Mourrat-Weber, in progress).

4. Non-Gaussian noise / fully nonlinear continuum models.

5. Control over larger scales ⇒ KPZ fixed point.

6. Characterisation of possible renormalisation maps. When does
it yield a modified equation in closed form?

7. Systematic way of choosing renormalisation procedure and
proving convergence (H.-Quastel; Bruned-H.-Zambotti, in
progress).
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