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Abstract

We consider parabolic stochastic partial differential equations driven by white
noise in time. We prove exponential convergence of the transition probabilities
towards a unique invariant measure under suitable conditions. These conditions
amount essentially to the fact that the equation transmits the noise to all its de-
termining modes. Several examples are investigated, including some where the
noise does not act on every determining mode directly.
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1 Introduction

We are interested in the study of long-time asymptotics for parabolic stochastic
partial differential equations. More precisely, the existence, uniqueness, and speed
of convergence towards the invariant measure for such systems is investigated. The
general setting is that of a stochastic PDE of the form

dr = Az dt + F(z)dt + Q dw(t) , z(0) = xo , (1.2)

where z belongs to some Hilbert space #, A is the generator of a Cy-semigroup
on H, F:H — H is some nonlinearity, w is the cylindrical Wiener process on
some other Hilbert space W, and @ : W — #H is a bounded operator. If the nonlin-
earity F' is sufficiently “nice”, there exists a unique solution z(t) to (1.1) (see e.g.
[DPZ92Db]). In this paper, we investigate the asymptotic stability of (1.1). We say
that the solutions of (1.1) are asymptotically stable if there exists a unique proba-
bility measure i, on H such that the laws of z(t) converge to u., independently of
the initial condition xy. We are interested in the situation where the asymptotic sta-
bility is a consequence of the noise (i.e. the deterministic equation £ = Ax + F(x)
is not asymptotically stable in the above sense), although the noise is weak, in the
sense that the range of @ in # is “small”.

The investigation of asymptotic behaviour for solutions of (1.1) goes back to
the early eighties (see for example [MS99] for an excellent review article or the
monograph [DPZ96] for a detailed exposition). Until recently, two approaches
dominated the literature on this subject. For the first approach, sometimes called
the “dissipativity method”, one considers two solutions z(t) and y(t) of (1.1), corre-
sponding to the same realization of the Wiener process w, but with different initial
conditions zg and yo. If A and F are sufficiently dissipative, ||z(t) — y(t)|| con-
verges to 0 for large times in some suitable sense. If this convergence is sufficiently
fast and uniform, it yields asymptotic stability results (see for example [DPZ92a]).
Closely related to this approach are the Lyapunov function techniques, developed
for semilinear equations in [Ich84]. The dissipativity method, as well as the Lya-
punov function techniques, are limited by the requirement that the deterministic
equation £ = Ax + F(x) already shows stable behaviour.

The (linearly) unstable situations are covered by the second approach, to which
we refer as the “overlap method”. It consists in showing that the Markov transition
semigroup associated to (1.1) has the strong Feller property and is topologically
irreducible. Then, provided that the equation (1.1) shows some dissipativity, ar-
guments as developed in the monograph [MT94], allow to bound the overlap be-
tween transition probabilities starting at two different initial points. This in turn
yields strong asymptotic stability properties. The main technical difficulty of this
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approach is to show that the strong Feller property holds. This difficulty is usu-
ally mastered either by studying the infinite-dimensional backward Kolmogorov
equation associated to (1.1) [DPZ91], or by showing that the Markov transition
semigroup has good smoothing properties [DPEZ95, Cer99]. This technique is
limited by the requirement that the noise be sufficiently non-degenerate. A typical
requirement is that the range of ) contains the domain of some positive power
of —A. To our knowledge, only one work [EHO1, Hai01] shows the strong Feller
property for a stochastic PDE in a situation where the range of @ is not dense in
(but still of finite codimension).

Very recently, a third approach, to which we refer as the “coupling method”,
emerged in a series of papers on the 2D Navier-Stokes equation. (See [KS01,
Mat01, MYO01] and the references in Section 6.) The main idea of these papers
is to make a splitting H = Hr @ Hg of the dynamics into a finite-dimensional,
linearly unstable, low-frequency part 7, and a remaining infinite-dimensional sta-
ble part # 5. An important assumption on @ is then that the range of @) contains
Hr. The space Hy, is chosen in such a way that the long-time asymptotics of
the dynamics is completely dominated by the behaviour of the low-frequency part.
More precisely, for any given realization z,(t) of the low-frequency part, the dy-
namics of the high-frequency part x g (¢) will loose memory of its initial condition
exponentially fast. On the low-frequency part, in turn, the noise acts in a non-
degenerate way. A clever coupling argument allows to combine these two facts
in order to obtain asymptotic stability results. The argument consists in coupling
two realizations of (1.1) in such a way that if the low-frequency parts meet at some
time 7, they remain equal for all times ¢t > 7. (Of course, one has to show that 7 is
finite with probability 1.) In fact, this coupling method is very close to the Gibb-
sian approach developed in [KS00, BKLOOb, EMSO01], which consisted in trans-
forming the infinite-dimensional Markovian system on # to a finite-dimensional
non-Markovian system on # . This finite-dimensional system was shown to have
exponentially decaying memory and thus techniques from statistical mechanics can
be applied.

Loosely speaking, the coupling method combines the arguments of both the
dissipativity method (on H ) and the overlap method (on #). The coupling
method thus yields a very powerful approach to the problem of asymptotic stabil-
ity of (1.1). The conditions of applicability of this coupling method have been suc-
cessively weakened in the aforementioned papers, but the existing results always
require, as we already mentioned, that the noise acts directly and independently
on every determining mode of the equation. In this paper, we extend the coupling
method to problems which do not satisfy this condition. Our overall approach is
similar to the one exposed by Mattingly in [Mat01], and consequently some of our
proofs are closely related to the arguments exposed there. Our main new idea is to
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construct a coupling for which the low-frequency parts of the dynamics do not ac-
tually meet at some finite time, but converge exponentially fast towards each other.
This “asymptotic coupling” is achieved through a binding construction exposed in
Section 2.3, which seems to be new and can in some cases be implemented even in
very degenerate situations.

In the following section, we illustrate the method of asymptotic coupling for a
simple finite dimensional problem.

1.1 A toy model
Consider the following system of stochastic differential equations in R?:

dzy = (221 + zo — 23) dt + dw(t)

1.2
dzo :(ng—i—arl—mg)dt. (1.2)

This equation should be interpreted in the integral sense, with w € © a Brownian
motion. Applying Hormander’s condition [HOr85, Nor86], it is easy to see that the
transition probabilities of (1.2) are smooth with respect to the Lebesgue measure
on R?. Furthermore, an easy controllability argument shows that they have support
everywhere and therefore are all mutually equivalent. Since (1.2) also exhibits a
strong drift towards the center of the phase space at large amplitudes, it follows
by standard arguments that (1.2) possesses a unique invariant measure u ., and that
every initial condition is exponentially (in variation norm) attracted by ..

The problem with this argument is that it heavily relies on the existence of
some reference measure (in this case the Lebesgue measure) which is equivalent
to the transition probabilities. In the infinite-dimensional setting, such a reference
measure will usually not exist when the noise is sufficiently degenerate. (For an
account of some cases where such a reference measure does exist in the infinite-
dimensional case, see [MS99, EHO1].) Furthermore, the fact that both directions
in (1.2) are linearly unstable prevents one from applying the coupling method as it
is presented in the previous section.

We will show that the invariant measure for (1.2) is unique, using a coupling
construction which pushes solutions together at an exponential rate. This construc-
tion is asymptotic, compared to more conventional coupling constructions, which
look for hitting times at which the coupled dynamics actually meets.

Before we proceed, let us explain briefly what we mean by “coupling”. A
coupling for (1.2) is a process (z(t), y(t)) € R? x R%, whose marginals z(¢) and y(t)
taken separately are both solutions of (1.2) (but with different initial conditions).
In general, one takes a measure P on Q x €2, whose marginals are both equal to
the Wiener measure W. Then a coupling for (1.2) can be constructed by drawing a
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pair (w, @) € Q x Q distributed according to P and solving the equations

dry = (221 + z9 — 23) dt + dw(t) , dy1 = 2y1 + yo — 13) dt + div(t)
dzy = 2z + 7, — 73)dt , dys = (2y2 +y1 — y3) dt . (1.3)

We will carefully choose the measure P in such a way that the quantity |z — y||
converges exponentially to O for large times. This then yields the uniqueness of the
invariant measure for (1.2).

Our main idea leading to the construction of P is to consider the following
system in R*:

dzy = (221 + zo — 23) dt + dw(t)

dzo = 212 + 11 — zg) dt,

dy1 = Qy1 +yo — 3) dt + dw(t) + G(z1, 9, y1,y0) dt
dy> = (2y2 +y1 — y3) dt ,

(1.4)

where dw denotes twice the same realization of the Wiener process. We see that
this equation is the same as (1.3) with @& defined by

t
w(t) =w(1f)+/0 G(z1(s), z2(s), y1(s), y2(s)) ds - (1.5)

The noise @ € Q is distributed according to some measure W which is in general
not equal to the Wiener measure W. Therefore, (1.4) does not yet define a coupling
for (1.2). If G is small in the sense that the quantity

/ PNG(1(s), 22(5), y1(5), o)) |2 ds (1.6)

is bounded with sufficiently high probability, then the measures W and W are
equivalent. In this case, it is possible to construct a measure P on © x Q whose
marginals are W, with the important property that there exists a random time 7
with P(7 < 0o) = 1 such that the solutions of the coupled system satisfy (1.4) for
times ¢ > 7.

In view of the above, we have reduced the problem to finding a function G
such that the solutions of (1.4) satisfy ||y(t) — z(t)|| — 0 for t — oo and (1.6) is
bounded. We introduce the difference process ¢ = y — z, and we write

o1 =201+ 02 — 01(z] + ;1 +9i) + G(z,v) (1.79)
02 =202 + 01 — 02(%5 + Toy2 + ¥3) . (1.7b)
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It is easy to find a function G such that g; — 0, but this does not yet mean that oo
will go to zero. A closer look at (1.7b) shows that if we could force p; to be very
close to —3p9, (1.7b) could be written as

02 = —02 + € — 02(73 + Ty + ¥3) ,

which is asymptotically stable. Introduce the function { = o1 + 302. We then have

¢=0(..)+G(z1,22,91,92)

with (. ..) an expression of the order ||o||(1 + ||z||% +||y||?). Now we can of course
choose G = —(...) — 2¢. This way, the equation for { becomes { = —2¢ and we
have the solution ¢(t) = ¢(0)e~2t. Plugging this into (1.7b), we get

b2 = —09 + C(0)e ™ — 0a(23 + waya + 1) -

We thus have the estimate

loa®)| < |02(0)e™" +[¢(0)]e™2" .

Finally, o is estimated by using the definition of ¢ and we get

lo1(®)] < |02(0)]e™" + 4|¢(0)]e 2" .

This shows that, with G chosen this way, there exists a constant C' such that

lz(®) — y@)I| < Cllz(0) — y(O)lle~*

for almost every realization of the noise. Since typical realizations of z(¢) do not
grow faster than linearly, G is also of the order e~*, with at most a polynomial
factor in ¢ multiplying the exponential. The main result of this paper, Theorem 4.1,
shows that the above construction implies the existence and uniqueness of an in-
variant probability measure p. for the problem at hand. Furthermore, it shows that
the transition probabilities converge exponentially fast towards u. in the Wasser-
stein norm (the dual norm to the Lipschitz norm on functions).

This concludes our presentation of the toy model. For a more precise statement,
the reader is encouraged to actually check that the above construction allows to
verify the assumptions stated in Section 5.

The remainder of this paper is organized as follows. In Section 2, we give
the precise definitions for the type of coupling we will consider. In Section 3, we
state the properties of the coupling that are required for our purpose. In Section 4,
we prove the abstract formulation of our main ergodic theorem. In Section 5, this
abstract theorem is then specialized to the case of stochastic differential equations.
In Section 6 finally, we present several examples where our construction applies,
although the noise does not act directly on every determining mode of the equation.
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2 The Coupling Construction

In this section, we explain our coupling construction. Before we start with the
actual definitions of the various objects appearing in the construction, we fix our
notations.

2.1 Notations

If 11 is a measure on a measurable space X (in the sequel, we will always consider
Polish® spaces) and f : X — Y is a measurable map, we denote by f*u the measure
on Y defined by (f*u)(4) = u(f~'(A)). For example, if II is a projection on one
component of a product space, IT* ., denotes the marginal of x on this component.
If a natural reference measure is given on the current space, we denote by Dy the
density of u with respect to the reference measure.

We define for any two measures p and v the measures u A v and p \ v. If a
common reference measure is given, these operations act on densities like

(D(u A v)) (@) = min{Du(z) , Dv(a)} ,
(D(u\ v))(z) = max{ Dy(z) — Du(z), 0} .

It immediately follows that = (u A v) + (i \ v) for any two measures y and v.
We will use the equivalent notations ;4 < v and v > p to say that 4 A v = p holds.
One can check the following relations:

funv) < ffunfiv,
fu\v) > ffu\ ffv.

Equalities hold if f is injective.

For a given topological space X, we denote by . (X) the space of all finite
signed Borel measures on X. We denote by . (X) the set of all probability mea-
sures on X. For p € .#(X), we denote by |||| its total variation norm (which is
simply its mass if p has a sign).

lie complete, separable, and metric
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2.2 Definition of coupling

In this section, and until the end of the paper, we will often consider families Q,, of
measures indexed by elements ¢y € Y, with Y some Polish space. One should think
of y as the initial condition of a Markov chain on Y and of Q, either as its transition
probabilities, or as the measure on pathspace obtained by starting from y. We will
always assume that the functions y — Q,(A) are measurable for every Borel set
A. If Q, is a family of measures on Y” and R, is a family of measures on Y™, a
family of measures (RQ), on Y™™ = Y™ x Y™ can be defined on cylindrical sets
in a natural way by

(RQ), (A x B) = /A R, (B)Q,(d2) 2.1)

where A C Y*, B C Y™, and z, denotes the nth component of z.

We consider a discrete-time Markovian random dynamical system (RDS) @ on
a Polish space X with the following structure. There exists a “one-step” probability
space (£2,.%#,P) and @ is considered as a jointly measurable map @ : (X, ) — X.
The iterated maps @™ : (X, Q™) — X with n € N are constructed recursively by

Dz, w1y, wp) = <I>(<I>"71(:v,w1, ey Wn—1), W)

This construction gives rise to a Markov chain on X (also denoted by &) with one-
step transition probabilities
P, = ®(z,-)*P.

The n-step transition probabilities will be denoted by P. Our main object of study
will be the family of measures on pathspace generated by ®. Take a sequence
{w;}$2, and an initial condition z € X. We then define zo = z and z;41 =
D (x4, w;). We will denote by P with n € N U {oo} the measure on X™ obtained
by transporting P™ with the map {w;} — {z;}. Itis also natural to view P} as a
measure on X™ x 2™ by transporting P™ with the map {w;} — {z;,w;}, so we will
use both interpretations.

Remark 2.1 The above setup is designed for the study of stochastic differential
equations driven by additive noise. In that case, €2 is some Wiener space and @
maps an initial condition and a realization of the Wiener process on the solution
after time 1. Nevertheless, our setup covers much more general cases.

The coupling needs two copies of the pathspace, i.e. we will consider elements
(z,y) € X x X, It will be convenient to use several projectors from XV x XV
to its components. We define therefore (for n < N):

Hl:(xay) =, HQ:(xay) =Y, 7Tn:(£L',y)'—> (wnayn) .
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We also define 7; ,, = II; o 7y, for ¢ € {1, 2}.

Definition 2.2 Let ® be a Markov chain on a Polish space X and let P° be the
associated family of measures on the pathspace X°°. A coupling for ® is a family

C2:, of probability measures on X>° x X satisfying

IMCy, =P and 5Ce, =P,

where II; and II, are defined as above.

A trivial example of coupling is given by CZ° = P° x Bp°. The interest of
constructing a non-trivial coupling comes from the following observation. Take
some suitable set of test functions G on X and define a norm on .# (X) by

lullg = sup (g, u) -
9€eG
Once the existence of an invariant measure for the Markov chain @ is established,
one usually wishes to show its uniqueness by proving that ® forgets about its past
sufficiently fast, i.e.

lim [|P? —Plllg =0, forall (z,y)€ X2,

with suitable bounds on the convergence rate as a function of the initial conditions.
Now take a coupling CZ° for ®. It is straightforward to see that by definition the
equality

(P",g) = /X 9@ (71, €5, (@)

holds, as well as the same equality where m, is replaced by my, and P} is re-
placed by P;. Therefore, one can write

[P~ Pyl =sup [ (oMs) —ols)) (riC)@) - @2

This equation is interesting, because it is in many cases possible to construct a
coupling C2°, such that for n large, the measure w7 C2°, is concentrated near the
diagonal II; z = II5z, thus providing through (2.2) an estimate for the term ||P} —
Py |lg- This is precisely what was shown in our toy model of Section 1.1, where we

constructed f in such a way that ||z(t) — y(¢)|| — 0 for t — oo.
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2.3 The binding construction

In this subsection, we describe a specific type of coupling for a given RDS ®. Only
couplings of that type will be taken under consideration in the sequel.

Let ® and the associated probability space (€2, .%, P) be as above. We consider
a family 4, : Q@ — Q (the pair (z,y) belongs to X2) of measurable functions
that also have measurable inverses. We will call these functions binding functions
for ®. The reason for this terminology is that, given a realization {w, }>2, of the
noise and a pair of initial conditions (z¢,y) € X2, the binding functions allow us
to construct two paths {z,} and {y, } by setting

Wp = sznayn(wn) ) Tnt1 = D(Tn,wn) , Ynt1 = P(yn, 0n) - (2.3)

Our aim is to find a family ,_,, such that y,, converges towards z,, in a suitable
sense for large values of n. Thus, the binding functions play the role of a spring
between z and y. We will say that (2.3) is a binding construction for ®. We denote
the inverse of +;_,,, by 9. . The reason behind this notation should be clear from
the diagram below.

RN N e Yn
*prn—’yn g ~ ~
O(,wp) <---wp =Wy ---> (-, ) (2.4)
Tn+Yn
Tpi41 Yn+1

The solid arrows denote the various maps and the dashed arrows denote the influ-
ences of the appearing quantities on those maps. It shows that it is also possible
to achieve the binding construction by first choosing a sequence {@, }°2, and then
using vz, y,, to construct the w,, thus obtaining the same set of possible realiza-
tions for (z,,, y,). This symmetry between 1, _,, and 1., is also explicit in (2.6)
below.

Guided by the above construction, we use the binding maps to construct a cou-
pling Markov chain ¥ on X x X with transition probabilities C , in the following
way. Define the maps

Tyl Q> QxQ Tyy: Qo QxQ

2.5
w = (wﬂpxay(w)) ) w ("/Jm—y(w)aw) . 29)

Notice that, up to some null set, the image of both maps is the set {(w,®) | @ =
Pz y(w)}. Then we define a family of measures Pyy ON 2 x Q by

Pry = (¥

r—Y

P)A (U5 ,P) = W5 (PAYE,,P). (2.6)
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According to (2.4), the measure P, . is precisely the common part between the
measure obtained for (w,,,@,) by distributing w,, according to P and the one ob-
tained by distributing w,, according to P. Thus both marginals of the measure P, ,
are smaller (in the sense of Section 2.1) than P. In order to have a non-trivial con-
struction, we impose that the measures P and +7_,, P are equivalent. The density
of y7 P relative to P will be denoted by D, , (w).

Considering again (2.4), the family of measures P, is transported on X x X

by defining

D, A xQ - XxX
(w, @) = (2(z,w), 2(y, @)

and setting
QCU,?! = (I)::,ypa:,y - (27)

But this does not give a transition probability function yet, since the measures P,, ,
are not normalized to 1. We therefore define the family of measures P, , by

Pm,y = Pm,y + Cw,y (P \ HT Pm,y) X (P \ H;Pz,y) '

where the number c; 4, is chosen in such a way that the resulting measure is a
probability measure. By a slight abuse of notation, we used here the symbol TI;
to denote the projection on the ith component of Q x Q. As a matter of fact,
(P\ 3P, ,) and (P \ TI3P, ,) have the same mass, which is equal to 1 — ||P,
SO

wll
1

Cpy — ———,

S IPA\TIZP,

for example. (Recall that the symbol || - || stands for the total variation norm, which
is simply equal to its mass for a positive measure.) It is straightforward to show
that the following holds:

Lemma 2.3 The measures P, , satisfy II;P, , = P fori =1,2.

Proof. Itis clear by (2.6) that TI*P, ., < P. Thus

1T,y —

HTPz,y = HTPz,y + CSU,Z/HP \ H;Pz,yH(P \ HTPz,y)

2.8
— (PATIP,,) + (P\TTP,,) = P, 29

and similarly for II5P, . O
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This finally allows us to define the transition probabilities for ¥ by

C%y = (I);,ypzc,y = Qz,y + Rw,y . (29)

In this expression, the only feature of R, , we will use is that it is a positive mea-
sure. We define C3° as the measure on the pathspace X*° x X°° obtained by
iterating (2.1). Since Iy o ®; , = ®(x,-) o IT; and similarly for II,, it is straight-
forward to verify, using Lemma 2.3, that the measure C2°, constructed this way is
indeed a coupling for ®.

For a given step of ¥, we say that the trajectories do couple if the step is drawn
according to Q , and that they don’t couple otherwise.

Remark 2.4 Since P, , is a family of measures on € x €, it is also possible to
interpret C7 ,, as a family of probability measures on X™ x X™ x Q™ x (", We will
sometimes use this viewpoint in the following section. It is especially useful when
the RDS @ is obtained by sampling a continuous-time process.

Remark 2.5 It will sometimes be useful to have an explicit way of telling whether
a step of ¥ is taken according to QZ°, or according to RZ°) (i.e. whether the trajec-
tories couple or not). To this end, we introduce a Markov chain ¥ onthe augmented
phase space X x X x {0, 1} with transition probabilities

Pw,y = Qw,y X 01 + Rz,y X dg -

The marginal of ¥ on X x X is of course equal to . By a slight abuse of notation,

we will also write CZ° for the probability measure on pathspace induced by 0.

It will be useful in the sequel to have a map that “transports” the family of maps
Py ON Q" via the RDS ®. More precisely, fix a pair (z,y) € X x X of starting
points and a sequence (wy,- .. ,wy) Of realizations of the noise. We then define
To = x, Yo = y, and, recursively fori =0,...,n

Ti+1 = (}(xiawi) ) Yi+1 = @(yzaqzjwlayz(wz)) .

This allows us to define the family of maps =7 : Q™ — Q" by

\_‘I,y .

Eg,—;l(wm ey Wp) (Tﬁzoﬂyo(wo), cee a"pznayn(wn)) . (2.10)

Since 93 _,, P is equivalent to P, we see that (Eg,y)*P” is equivalent to P™ and
we denote its density by Dz . We also notice that the family of measures Qz ,
is obtained by transporting (Eg,y)*P" A P™onto X" x X" with the maps @, ,. ©
V.- IN particular, one has the equality

1Q% 41l = I(E24)"P" AP = /m(l A Dy y(w)) P"(dw) . (2.11)
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3 Assumptionson the Coupling

In this section, we investigate the properties of the coupling C2°, constructed in the
previous section. We give a set of assumptions on the binding functions v, _,, that
ensure the existence and uniqueness of the invariant measure for ®.

In order to achieve this, we want the map 1),_,, to modify the noise in such a
way that trajectories drawn according to Q. tend to come closer together. This
will be the content of Assumption A3. Furthermore, we want to know that this
actually happens, so the noise should not be modified too much. This will be the
content of assumptions A4 and A5. All these nice properties usually hold only in a
“good” region of the phase space. Assumptions Al and A2 will ensure that visits
to this good region happen sufficiently often.

3.1 Lyapunov structure

Since we are interested in obtaining exponential mixing, we need assumptions of
exponential nature. Our first assumption concerns the global aspects of the dynam-
ics. It postulates that @ is attracted exponentially fast towards a “good” region of
its state space. We achieve this by assuming the existence of a Lyapunov function
for ®.

Definition 3.1 Let ® by a RDS with state space X as before. A Lyapunov function
for @ is a function V : X — [0, oc] for which there exist constants a € (0,1) and
b > 0, such that

/Q V(®(x,w)) P(dw) < aV(z) + b , 3.1)
for every z € X with V(z) < co.

Our first assumption then reads
Al There exist a Lyapunov function V" for ®. Furthermore, V' is such that
P{w | V(®(z,w)) < 0} =1,
for every z € X.

For convenience, we also introduce the function V: X x X — [0, oc] defined
by .
Viz,y) =V(z)+V(y) .
Notice that V is a Lyapunov function for ¥ by construction.
In some cases, when the control over the densities D , is uniform enough or
when the phase space is already compact (or bounded), a Lyapunov function is not
needed. In such a situation, one can simply choose V' = 1.
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In our case of interest, the RDS & is obtained by sampling a continuous-time
process @, at discrete times. In that setting, it is useful to have means to control
excursions to large amplitudes that take place between two successive sampling
times. To this end, we introduce a function W : X x Q — [0, o] given by

W(z,w) = sup V(®yz,w))
te[0,1]

in the continuous-time setting and by
W(z,w) =V(z)

in the discrete-time setting. In fact, any other choice of W is all right, as long as it
satisfies the properties that are summarized in Assumption A2 below.

Before stating these properties, we define two other functions that act on pairs
of initial conditions that couple by

Wmay(w) = W(.’E, w) + W(y, ¢$—>y(w)) )
Wecy(Ww) = W(z, ¢z y(w)) + W(y,w) .

We will assume that W and the binding functions are such that W, W,_,, and
Wy do not behave much worse than V. More precisely, we will assume that:

(3.2)

A2 There exists a function W : X x £ — [0, co] such that
eiseigf W(z,w)=V(z), (3.39)
/Q W (@, w)P(dw) < cV(z), (3.3b)
for some constant ¢ > 0. Furthermore, there exist constants C > 0and § > 1
such that the estimates

Wooy(w) < CL+ V@) +W(z,w)’,
Wi y(w) < C(1+ V() + W(y,w)’,

hold for the functions defined in (3.2).

(3.4)

The Lyapunov structure given by assumptions Al and A2 ensures that W (and
thus also V') does not increase too fast along a typical trajectory. In order to make
this statement precise, we define for a given initial condition z € X the sets A, ;, C
Q> by

App = {w € Q% | W(®"(z,w),wn) < kV(z) + kn® Vn >0}, (3.5)

where k is some positive constant. The sets A, ; contain almost every typical
realization of the noise:
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Lemma 3.2 Let ® be a RDS satisfying assumptions Al and A2. Then, there exists
a constant C' > 0 such that

POO(A:U k) >1-

)

= Q

for every x € X and every k > 0.
Proof. For w € Q°°, we define z,, = ®"(z,w). Notice that by (3.3b) and the
Lyapunov structure, one has the estimate

be
l1—a’
where E denotes expectations with respect to P°°. We also notice that A, ; =
Nuso AL with

E(W(wnawn—l—l)) < ca,"V(x) +

(3.6)

A = {0 | W(@n, wns1) < KV (@) + kn®} -
Combining this with (3.6), we see that

"V(z) + b1 —a)~!
po° A(n) >1— EG,
( “’k) = k V(z) + n?

Therefore, the worst possible estimate for P*°(A, ;) is

© —1
. c a™V(z) +b(1 — a)
>1_ 2
Prden) 21 =3 V) +nz

n=1

which proves the claim. O

3.2 Binding property

The crucial property of the coupling is to bring trajectories closer together. In order
to make this statement more precise, we introduce the Lipschitz norm || - ||, defined
on functions g : X — R by

(=) — 9(¥)|
=sup|g(z)| + sup ———+
||g||L w€§|g( )‘ w,yEpX d(:l:,y)
where d(-, -) denotes the distance in X. The dual norm on .# (X) is then given by
lulle = sup [ g(z)u(dz) .
llgll =17X

With this definition at hand, we make the following assumption on the coupling
part QZ°,.
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A3 There exist a positive constant -; and a family of constants K — Cg such
that, for every K > 0,

”ﬂ-in aov?y - ﬂ-;,anc,)y”L < Cge M", (3.7
holds when V (z,y) < K.

Remark 3.3 The sub-probability kernels Q. ,, are smaller than the transition prob-
abilities for the binding construction (2.3). Thus, (3.7) is implied by an inequality
of the type }

E(d(zn,yn)) < CV(zo,y0)e” ",

where d denotes the distance in X and E denotes the expectation with respect to the
construction (2.3).

Notice that this assumption is non-trivial only if our coupling is such that
1Q3% Il > 0 for sufficiently many starting points. This will be ensured by the
next assumption.

A4 Let Dy, be defined as in Section 2.3. We assume that for every K > 0, there
exists a family of sets Pf’y C % and constants ¢i,c2 > 0 such that the
estimates

PRTE ) > 1 /F (DR )P ) <2 (38)

z,y

hold for every n > 0, whenever V(z,y) < K. The integral over I‘f,y in (3.8)
should be interpreted as the integral over the projection of I‘f,y onto its n first
components.

A typical choice for K isTK, = A, or 0K, = Ay N Ay with & suffi-

ciently large as a function of K. In this case, Lemma 3.2 ensures that the conditions
required on I‘ffy are satisfied. As a consequence of Assumption A4, we have

Proposition 3.4 Let Q2°, be defined as above and suppose that assumptions Al
and A4 hold. Then there exists for every K a constant C'gc such that ||Q2°, || > Ck,

whenever V(z,y) < K.

Proof. Notice first that if ;41 and pq are two equivalent probability measures with
wo(dz) = D(z) u1(dx), then the condition

/A (D)2 ju(de) < ¢
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implies that

2
(1 A p2)(A) > Mlif) :

see, e.g. [Mat01]. Recalling (2.11), we use Lemma 3.2 and the above estimate with
p = P", D =Dy, and A = l“f,y. Taking the limit » — oo and using the
assumption on I‘gy proves the claim. O

Our last assumption will ensure that trajectories that have already coupled for
some time have a very strong tendency to couple for all times.

In order to formulate our assumption, we introduce a family of sets Q% (z, v),
which are the possible final states of a “coupled” trajectory of length n, starting
from (z, y), and never leaving the set {(a, b) | V(a) + V' (b) < K}. For a given pair
of initial conditions (z,y) € X2 with V(z,y) < K, we define the family of sets

% (z,y) C X x Xrecursively in the following way:

Qk(,y) = {(z,9)},
Qu(z,y) = U {(®apo¥op)w) | we Qand W,_p(w) < K} .
(a;,b)EQY (z,y)

Notice that we would have obtained the same sets by reversing the directions of the
arrows in the definition.
We also denote by D, ,(w) the density of 7 _,, P relative to P.

A5 There exist positive constants Cs, 2 and ¢, such that for every K > 0, every
(z0,y0) € X2 with V(zo, o) < K, and every (z,y) € Q%(zo,yo), the estimate

J (1~ Duy@)?Pldw) < Coe ™1+ K)E,  (3.9)
Waey(W)<K

holds for n > ¢ In(1 + K)/~s.

This assumption means that if the process couples for a time n, the density D, ,,
is close to 1 on an increasingly large set, and therefore the probability of coupling
for a longer time becomes increasingly large. This assumption is sufficient for the
family of measures (RQ"™) , to have an exponential tail at large values of n. More
precisely, we have

Proposition 3.5 Let assumptions Al, A2 and A5 hold. Then, there exists a posi-
tive constant -3 and, for every K > 0, a constant Cx such that

[(RQ™zyll < Cre™ 7", (3.10)

holds for every n > 0, whenever V (z,v) < K.
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We first show the following elementary estimate (it is not optimal, but sufficient
for our needs):

Lemma 3.6 Let pu1,us € #1(X) be two equivalent probability measures with
po(dz) = D(z) p1(dx). Then the conditions

p(A) >1—¢ and /(1 — D@))? p(dz) < ea
A
for some measurable set A imply that
(i Ap2)(A) 21— — )/
Proof. Define the set E C X by
E=An{zeX|D(x)>1}.
We then have
(11 A i2)(A4) = i (B) + [ Dla) ()
A\E
= @)~ [ (1= D) (da)
A\E

> ui(A) - /A D@l

>1—¢€1— \//A\E(l — 'D(x))Qul(d.’L') .

This shows the claim. O

Proof of Proposition 3.5. Fix the value n and the pair (z,y). For every ¢, >
V (x,y) (we will fix it later), we have the estimate

[(RQ™)zyll = / (1 = 195,y P A PI) (m,Q2, ) (dn, diy) (3.11)

X2
< (mQg,) X\ Q2 (1))
+ (1 = %z, 5y P AP (m Q2 ) (d, diy) -
Q2z, (z,y)
Now choose another value w,, to be fixed later and consider for every (x,, y,) the

set
B, ={we€ Q| Wiy, (W) < Wy}
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By the definition of Q7 (x,y), its elements (z,,yn) satisfy in particular the in-
equality V (z,ys) < cn. By Assumption A2 and the Lyapunov structure, we have
for every (z,,yn) € Q% (z,y) the estimate

Cn

P(B,) > 1 C-7 .
Wn

Combining this and Assumption A5 with Lemma 3.6 yields

Cn —om
165, P APl > 1= C—5 = Ce"2 (1 4w,)2,
Wn

as long as wy, is such that
Wy, > ¢, and n > CIn(l+wy,)/ye - (3.12)

It remains to give an upper bound for (W;Qg,y)()@ \ QF (z,y)) to complete our
argument. Define the sets A”(K) C X" x X" x Q" x Q" by

An(K) = {(CC»L, Yi, Wiy 771')?:1 | W(wla wi) + W(ylanl) < K} .
It is clear by the definition of Q7 (z,y) that we have the equality
(M Qi) (X*\ QF, (1) = Q. (X" x X x Q" x 0"\ A"(cn)) .

where Q7 is considered as a measure on X" x X" x Q" x Q", following Re-
mark 2.4. Since Q3 ,, < Cg ,, we have

T,y

" n(V z,y)+1
(T3 QR )0\ QF, (2,1) < 1= CF, (A"(ey) < "D L,
n
for some constant C. This last estimate is obtained in a straightforward way, fol-
lowing the lines of the proof of Lemma 3.2. Plugging these estimates back into

(3.11) yields

n Vx, +1 c -~
- cf) | +Cw17;5 +Ce (14 wy) /2
n

I(RQ"zyll < C
At this point, we make use of our freedom to choose ¢,, and w,,. We set
en = V(z,y) +ern and wy, = V(z,y) + ™,
with ~y. and ~,, given by

- and S
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As a consequence, there exist for any v < . some constants C and ¢ such that
[(RQM)zyll < C(1+V(z,y) e ™,

as long as n > ¢ In(1 + wy,) /2. (Such a value of n can always be found, because
the exponent -y, is always smaller than -y /¢.) In order to complete the argument,
we notice that (3.10) is trivially satisfied for small values of n because ||(RQ™), ||
is always smaller than 1 by definition: it suffices to choose C'x sufficiently big.
The proof of Proposition 3.5 is complete. 0

4 An Exponential Mixing Result

This section is devoted to the proof of the main theorem of this paper.

Theorem 4.1 Let @ be a RDS with state space X satisfying assumptions A1-A5.
Then, there exists a constant v > 0 such that

1Py —Ppll. < CA+V(z,y) e ™,
for every (z,y) € X2 and every n > 0.

Remark 4.2 The proof of Theorem 4.1 does not rely on assumptions A4 and A5
directly, but on the conclusions of Propositions 3.4 and 3.5. Nevertheless, in the
setting of stochastic differential equations, it seems to be easier to verify the as-
sumptions rather than to show the conclusions of the propositions by other means.

Corollary 4.3 If ® satisfies assumptions A1-Ab5, it possesses a unique invariant
measure p, and
[P — pall < CA+ V(@) e .

Proof of the corollary. To show the existence of the invariant measure y ., we show
that for any given initial condition = with V' (z) < oo, the sequence of measures P,
is a Cauchy sequence in the norm || - ||, . We have indeed

1P — P2 ¥l = sup [ g(=)(P} — Py")(d2)
lgll <1 /%

_ n _ pn k
= s, /X /X 9(2)(PI = P7)(dz) P (dy)

< /X [P — P, PE(dy) < Ce ™ /X (1+ V(z, ) PX(dy)
< Ce ™1+ V(@) ,
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where we used the Lyapunov structure to get the last inequality.
The claim now follows immediately from the theorem, noticing that if 4. is an
invariant measure for ®, then

/V@MMSJL,
X l1—a

due to the Lyapunov structure and the fact that the dynamics immediately leaves
the set V1 (o0). 0

Before we turn to the proof of Theorem 4.1, we introduce some notations and
make a few remarks. By iterating (2.9), one sees that

o0
Cy, = Q% + D (C*RQ™),, . (4.1)
n=0
where the symbol (C“RQ")W is to be interpreted in the sense of (2.1). This
expression is the equivalent, in our setting, of Lemma 2.1 in [Mat01]. Using (4.1),
the Markov chain ¥ can be described by means of another Markov chain YT on
Y = (X2 x N) U {x}, where x corresponds to “coupling for all times” in the sense
of Section 2.3. First, we define

4b

Ky = ,
0 1—a

KO = {($ay) | Ih}v(‘Tay) < KO} ) (42)

where @ and b are the constants appearing in the Lyapunov condition. This set is
chosen in such a way that

~ 1+a-~ ~
[, V@) Capnldn,dy) < —“V(eo,u0) .V (@o.0) ¢ Ko (43)
X

Attime 0, T is located at (,y,0). If it is located at (z,,n) and (z,y) & Ko,
then it makes one step according to C , and n is incremented by one:

P(z Cx,y X 6n+1 .

) T

If Y is located at (z, y, 7) and (z, y) € Ky, then it has a probability 1Q2% Il of jump-
ing to % and a probability ||[(RQ™),,,|| of making m steps according to (RQ™):

Pa.ym) = ”Qg?y

16+ > T (RQ™)gy X et -
m=0

If Y is located at «, it remains there:

P*:é*.
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The Markov chain T induces a family If’gf’y of probability measures on Y*°. Let
7:Y* — N U {oo} be the function that associates to a sequence of elements in
Y the largest value of n that is reached by the sequence (7 = 0 if the sequence is
equal to = repeated). We also define & : Y — N U {oo} as the value of n attained
at the first non-vanishing time when the sequence hits the set Ky x N (& = oo
if this set is never reached). The construction of Y is very close to the coupling
construction of [Mat01].

The crucial observation for the proof of Theorem 4.1 is

Lemma 4.4 Let ® be a RDS with state space X satisfying assumptions Al and A3,
and let Y be defined as above. Then, there exists a constant C such that

1P — P < P,({# > n/2)) + Ce™m™/2
for every (z,y) € X2 and every n > 0.

Proof. Recall the Markov chain ¥ defined in Remark 2.5. We define a function 7,
on its pathspace by

71 : X% x X* x {0,1}*° — N U {oc}
{(@i,yi, bi) Yoo, +> Inf{n| (20, yn) € Ko and b; = 1 Vi > n} .

Combining (2.2) with Assumption A5 and the definition of 71, one sees that

IPR — Pl < CX, ({11 > n/2}) + Ce /2
From the construction of Y and the definition of 7, we see furthermore that the
probability distributions of 7 under CZ° and of 7 under PZ°, are the same. 0

Proof of Theorem 4.1. It remains to show that ﬁg?y({% > n/2}) has an exponential
tail. The key observation is the following. Let z, € NU {—oco} withn > 0 be a

Markov chain defined by

—0 with probability p,,

zo0=0, Tpy1= {$n +m  with probability p,,,

where m > 1 and, of course, p, + > oo_; pr = 1.

Lemma 4.5 If the p,,, have an exponential tail and we define 7 = max,, z,, then
the probability distribution of 7 also has an exponential tail.



AN EXPONENTIAL MIXING RESULT 23

Proof. The claim is an easy consequence of Kendall’s theorem, but for the sake
of completeness, and because the proof is quite elegant, we outline it here. Define
the analytic function p(¢) = > ,-—; pm¢™ and define g, as the probability of =
being equal to n. Notice that, because of the exponential tail, p is analytic in a disk
of radius strictly bigger than 1 around the origin. A straightforward computation
shows that go = p, and, for n > 0,

n = Px (pn + Z Pk Py + Z Pk PkoPks + - - ) ,
k1+kao=n ki+k2+ks=n

which is equal to the nth Taylor coefficient of the function

Dx
Q) = —-= -
1—p(C)
Since p(1) = 1—p, < 1, there exists an € > 0 such that p(1+¢) < 1. Furthermore,
since the py, are all positive, one has the estimate |p(¢)| < p(|¢|). Using Cauchy’s
formula on a circle of radius 1 + ¢, one gets

gn] < — 22 !
1—-pA+e)(1+e)

which shows the claim. O

Before we prove Theorem 4.1 in full generality, we restrict ourselves to the case
when (z,y) € K. It follows from the construction that 7 (seen as a random
variable under the distribution induced by ﬁ’g‘fy) is dominated by the process z,
constructed above with the tail distribution of the p,,, being equal to

Pm = SUp~ F\)g?y({’% = m}) :
(SU,y)EK()

This means that we define m, as
o0
m. =inf{m | > pn <1},
n=m

and then set p,, = pm, for m > my, pm = 0 for m < my — 1, and py,, —1 in such
a way that the p,, sum up to 1.

Because of Lemma 4.5, it suffices to show that the tail distribution of the 5,
decays exponentially. We thus estimate the quantity ﬁg"’y({& > n}). To this end,
we introduce the function 7y : X*° x X — N U {oo} defined by

To(@,y) = inf{n > 0 | (T, yn) € Ko} .
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Notice that, in order to have # > n, there are two possibilities. Either the first
step of T is taken according to (RQ™),,, with some m > n /2, or the correspond-
ing realization of U stays outside of K, for a time longer than n /2. This yields the
estimate

S (k)< Y IRQel+ 2 o C, (e > n/2))

m=n/2 (z0,y0)€ Ko

holding for (,y) € K. The first term has an exponential tail by Proposition 3.5.
The second term has also an exponential tail by (4.3) and standard Lyapunov tech-
niques (see e.g. [MT94, Thm 15.2.5]). This concludes the proof of Theorem 4.1
for the case (z,y) € Kj.

In order to conclude the proof for the case (z,y) ¢ Kp, notice that

{T >n}) < Z C {'r\p =m}) sup ngyo({% >n—m})
(z0,y0)E Ko

sup P2 w{F=n/2h+ Z Cy,({re =m}) .

(xo,y0)E Ko m=n/2

<

|3

The first term is bounded by the construction above. The Lyapunov structure im-
plies that there exists a constant v > 0 such that the first hitting time 7 satisfies
Ewye’™ = O(V(z,y)) for every (z,y) € X2 (see again [MT94, Thm. 15.2.5]).
This allows to bound the second term and concludes the proof of Theorem 4.1. D

5 Application to Stochastic Differential Equations

In this section, we will see how to apply Theorem 4.1 to the case when the RDS @ is
constructed by sampling the solution of a (possibly infinite-dimensional) stochastic
differential equation. We will restrict ourselves to the case where the equation is
driven by additive white noise. The case of multiplicative noise requires further
estimates, but can also be described by the formalism exposed here.

Consider the equation described by

dz(t) = Az dt + F(z)dt + Q dw(t) , z(0) = zq , (5.1)

where x belongs to some separable Hilbert space #, w is the cylindrical Wiener
process on some separable Hilbert space W, and A, F' and @ satisfy the following
assumptions:

B1 a. The linear operator A: #(A) — H is the generator of a strongly continu-
ous semigroup on H.
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b. The operator e4*Q: W — # is Hilbert-Schmidt for every ¢ > 0 and one
has the estimate

1
/0 et QA dt < 0o . (5.2)

c. The nonlinear operator F': Z(F) — H is such that, for every zo € H,
there exists a unique, continuous stochastic process z(t) such that z(s) €
9(F) for s > 0 and

t t
z(t) = etz + / AP (x(s)) ds + /0 eA=90dw(s), (5.3)
0

for every ¢t > 0.

Remark 5.1 This assumptions simply states that there exists a unique weak so-
lution to (5.1). Notice that we do not make any assumptions on the tightness of
the transition probabilities for (5.1). As a consequence, existence and uniqueness
results for invariant measures can in principle be deduced from Theorem 5.5 below
even in cases where the semigroup e“? is not compact.

In order to recover the formalism used in Section 2, we follow [DPZ92b] and
introduce an auxiliary Hilbert space V such that there exists a continuous embed-
ding .: W < W, which is Hilbert-Schmidt. We can now set 2 = Cy([0, 1], W),
the space of continuous W-valued functions that vanish at 0, and define P as the
Wiener measure on W with covariance operator ..*.

We define ®:H x Q@ — H as the map that solves (5.3) up to time 1 given
an initial condition and a realization of the noise. This map is defined P-almost
everywhere on . We also denote by &,:#H x Q°° — H the map that maps an
initial condition and a realization of the noise onto the solution of (5.3) after a time
t.

Our next assumption is the existence of an appropriate Lyapunov function V':

B2 There exists a measurable function V' : H — [0, co] and constants ¢ < 1 and
b, c,d > 0 such that

E,V(®(z,w)) <aV(z)+ b,

Ew( sup V(@t(w,w))) <cVi(z)+d, (5.4)
0<t<1

P{w | V(®(z,w)) = oo})

0 ’

for every x € H. Furthermore, V' dominates the norm in # in the sense that
llz|| < C(1+ V(z)) for some constant C.
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As is Section 3, we define V(z,y) = V(z) + V(y).

Remark 5.2 Take # equal to L2(©) for some regular bounded domain @ C R¢,
A a second-order elliptic differential operator on O with sufficiently smooth coef-
ficients, and F' any polynomial non-linearity of odd degree having the correct sign.
The assumptions B1 and B2 are satisfied with V (z) = ||z||? for every power p > 1
and every “reasonable” norm || - ||,, as long as @ is “small” enough. (One can for
example take for || - ||, the L°° norm or a Sobolev norm.)

We now turn to the binding construction for the problem (5.1). Take a function
G :H? — W and consider the 7£2-valued process (z, y) solving

dz(t) = Az dt + F(z)dt + Q dw(t) , (5.5a)
dy(t) = Ay dt + F(y)dt + Q G(z,y) dt + Q dw(t) . (5.5h)

Notice that the realization of w is the same for both components. The process
(5.5) yields our binding construction for (5.1). In order to give sense to (5.5b), we
introduce the H-valued process o(t) = y(t) — z(t) and we define it pathwise as the
solution of the ordinary differential equation

0=Ap+F(x+0)— F(z)+ QG(z,z + o) . (5.6)

We assume that G is sufficiently regular to ensure the existence and uniqueness
of global weak solutions to (5.6) for almost every (with respect to the measure
on pathspace induced by ®;) continuous function z:[0,00) — H. This allows
us to define the stochastic process y(t) by y(t) = z(t) + o(t). We will denote
by B:X x X x Q — X the map that solves (5.5b) up to time ¢, given an initial
condition for z and y, and a realization of the noise.

The above construction is invertible in the following sense. Consider the #2-
valued process

di(t) = Az dt + F(&) dt — Q G(&, ) dt + Q di(?) (5.7a)
dij(t) = Ajdt + F(@) dt + Qda(t) , (5.7b)

where we give sense to the equation for Z as above by setting g = y—Z and solving
o=A+FG —F(G—-0)+QGH - 8:9) -

We denote by X x X x Q- Xthe map that solves (5.7a) up to time ¢, given
an initial condition for z and g, and a realization of the noise @ € 2. We see that
(5.7) can be obtained from (5.5) by the substitution d&o = dw + G(z,y)dt and
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a renaming of the variables. This observation yields the invertibility of the maps
Py defined in Eq. (5.12) below.

We will state two more assumptions to make sure that the conclusions of The-
orem 4.1 hold. First, we want G to become small as z and y become close.

B3 There exists a constant C' > 0 and exponents «, 8 > 0 such that
|G, I < Cllz = yl|*(1 + V(w, )", (5.8)
for every z,y € H.

The last assumption ensures that the process y(t) converges towards x(t) for large
times.

B4 There exist positive constants C' and -y such that the solutions of (5.5) and (5.7)
satisfy

11z, @) = B,y @] < Ce (14 V() + WV (@y(,0) . (5:99)
s<t

181(z, 9, w) — @u(y,w)]| < Ce (14 V(z) + SUp V7 (4(y. w)), (5.9b)

for P°°-almost every w € Q°°. Furthermore, there exists § > 0 such that one
has the estimate

V(@ila,p,w) < C(14 V) + sV (@,(z, @) 6109
s<t
V(@ila,p,0) < O(14 V(@) +supV(@:(0, )’ (5.100)

for P>°-almost every w € Q°° and every t > 0.

Remark 5.3 One important particular case is the choice V' (z) = ||z||?, where the
power p is chosen in such a way that (5.9) is satisfied. Notice that in this case, the
estimates (5.10) are a straightforward consequence of (5.9).

The function G is then only required to satisfy a bound of the type

IG@, »I? < Cllz —ylI* (1 + ||zl + llyl)* .

with « and g some arbitrary positive exponents.

It is also possible to choose V(z) = ||z||%, with || - ||, the norm of some Banach
space B C H. In this case, (5.9) with the B-norm replacing the #-norm in the
left-hand side implies (5.10).
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Remark 5.4 An equivalent way of writing (5.9b) is

191(z,w) — Bu(z,y, )| < Ce " (14 V(@) +5upV (By(z,y,))) - (5:11)
s<t
The equation (5.11) will be more natural in our examples, but (5.9) is more sym-
metric and more convenient for the proof of Theorem 5.5 below.

All these assumptions together ensure that exponential mixing takes place:

Theorem 5.5 Let A, F and @ be such that assumptions B1 and B2 are satisfied.
If there exists a function G':H? — W such that assumptions B3 and B4 hold,
then the solution of (5.1) possesses a unique invariant measure u, and there exist
constants C,~ > 0 such that

1Py = by < Ce™™ (1 4 V() -

Proof. It suffices to show that assumptions A1-A5 hold. Assumption Al follows
immediately from Assumption B2. In order to check the other assumptions, we
define the various objects appearing in the previous sections. We have already seen
that X = H, Q = Co([0, 1], W), and & is the solution of (5.1) at time 1.

We define the function W :H x Q — [1, oc0] by

W(z,w)= sup V(Pi(z,w)) .
te[0,1]

The estimate (5.4) and the definition ensure that W satisfies (3.3a) and (3.3b). The
bound (5.10) ensures that Assumption A2 is also satisfied.

It remains to define the binding functions %,_,, and to compute the densities
Dy - According to the constructions (5.5) and (5.7), we define for (z,y) € H? the
binding functions

t

(Pamry @) () = w(t) + /0 G(@4(z,w), Balz,y,w)) ds . (5.122)
t

(aey(@))(#) = wlt) — /0 G(Ba(z,y,w), By(y,w)) ds . (5.12b)

with ¢ € [0,1]. It follows from the construction that these functions are each
other’s inverse. Furthermore, if we identify Q™ with Co([0, 7], W) in a natural way,
we see that the maps =7, introduced in (2.10) are obtained from (5.12) by simply
letting ¢ take values in [0, n]. These observations allow us to compute the densities
Dz ,(w) by Girsanov’s theorem:
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Lemma 5.6 The family of densities D , (w) is given by

@) = o0 [ 6B, y,0), Bty ) dutt) 5 [ 16C. 7).
where the arguments of G in the second term are the same as in the first term.

Proof. If we can show that Girsanov’s theorem applies to our situation, then it
precisely states that

¢zeypn = P !

with I5"(dw) = Dy (w) P"(dw), and D7, (w) defined as above. Applying ¢, to
both sides of the equality shows the result.

We now show that Girsanov’s theorem can indeed be applied. By [DPZ92b,
Thm 10.14], it suffices to verify that

/ D (w) P"(dw) = 1. (5.13)
QTL

This can be achieved by a suitable cut-off procedure. Define for N > 0 the function

_ [G(z,y) if||G(z,y)| <N,
G (@,y) = { 0 otherwise,

and define
n - 1 n
Dz,’év(w)zexp(/0 G (B1(a, y,w), Boly, w)) dwo(t) — 5 /0 |G (.- I dt)

It is immediate that (5.13) holds for D%\’. Furthermore, it follows from Assump-
tion B4 that there exists a constant C'y such that D;Z;év (w) = Dy, (w) on the set

Ty = {w € P" | V(®s(z,y,w), Bs(y,w)) < Cn Vs € [0,n]} .

The sets I'y satisfy limy_,o, P*(I'y) = 1 by (5.4) and (5.10b). This shows that
(5.13) holds. Notice that the a-priori bounds of Assumption B4 were crucial in
this step in order to apply Girsanov’s theorem. The bound (5.8) alone could lead to
exploding solutions for which Girsanov’s theorem does not apply. O

It is immediate that Assumption A3 follows from Assumption B4 and the definition
of the norm || - || ..

We now turn to the verification of Assumption A4. Recalling the definition
(3.5), we see that in our case

Ay C Byp={w € Q% | V(®,(y,w)) < k(V(y) +s*) Vs>0}.
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As we see from the definition of B, ;, a natural definition for a truncation G, ;. of
G (this time the truncation additionally depends on time) is

0.0 = | G@9) V(G <k(V(y)+17),
Gyr(Z:9:1) {0 otherwise.

As above, we define
n - 1 n
D) = ([ Cyr(Bu(e.v.0). 910,0), ) dw0)—5 [ 16,0 ) dt)

By definition, Dg;g’j(w) = Dy, (w) for every w € By . Setting § = (o + 3), we
thus have the estimate

| @) P < [ (D) Prd)

Y,k ¥,k

n - 1/2
< ( /9 exp(10 /0 |Gy i (B1(z, 9, w), @u(y, w), )| dt ) P“(dw))
Y,k

< (/B exp (10 /0” Ce™ (1 +V(z)+ sig V(®s(y, w)))f dt) P"(dw)) v
< exp (c/on e ML+ kV () + k) dt) .

In this expression, we used the Cauchy-Schwarz inequality to go from the first to
the second line, and we used assumptions B3 and B4 to go from the second to the
third line. Since the integral converges for n — oo, the bound is uniform in n and
Assumption A4 is verified.

The verification of Assumption A5 is quite similar. Fix some positive constant
K > 0 and use again the cutoff function

O (. 7) = {G(i,g) it |G, 9> < N,
’ 0 otherwise.

The precise value of N (as a function of K) will be fixed later. We also fix a
pair (zo, o) € H? with V(zo,v0) < K, a value n > 0, and initial conditions
(z,y) € Q%(xo,y0). By the definition of Q% (xo,y0), there exists an element
@ € Q™ such that

(,9) = (Bn(20, Y0, @), Pn(yo, @) , (5.14)

and such that

sup. V(®s(z0, 0, @), Bs(y0,d)) < K . (5.15)
s€l|0,n
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Following the statement of Assumption A5, we define the set

BE, ={wen| sup V(@ie,y.0) ®i(y0) <K},
Y t€[0,1]

which is equal in our setup to the set over which integration is performed in (3.9).
Being now accustomed to these truncation procedures, we define again

1 1
DU9@) = exp( | Giv(@1(s. 9., ) do(®) — 5 [ 16 (.7 )

By (5.14) and the cocycle property, we can write the integral in the above expres-
sion as

1
/0 G (B (0, 10, 90, By, ) deo() |

where @w is the realization of the noise which is equal to & for a time n and then
to w for a time 1. Using the a-priori bound (5.15) as well as assumptions B3 and
B4, we thus see that there exists a constant C' such that the choice

N = Ce (1 + K)**F

ensures that D) (w) is equal to D,y (w) for w € BX,,.
We then have the estimate

/ (1= Dy () Pldw) < / (1 = DI (w))” P(dw)

z,Y Q
— [ (DY)’ Pldw) - 1
1 - 1/2
< ([ (6 [ 16y @le,v.0), Buty, )| dt) Plaw)) 1
< exp(Ce ™1 + K)*P) —1.

If we take n > S1In(1 + K)/+, the exponent is bounded by C and there exists a
constant C” such that

[ (1= Duyf) Plde) < Cle™m(1+ K)™
B,

thus validating Assumption A5 with v = ayand ( = a + 5.
The proof of Theorem 5.5 is complete. O
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6 Examples

Numerous recent results show that the invariant measure for the 2D Navier-Stokes
equation (and also for other dissipative PDES) is unique if a sufficient number of
low-frequency modes are forced by the noise [BKL00a, BKL0Ob, EMS01, Mat01,
ELO1, KS00, KS01, MYO01]. These results are not covered directly by Theo-
rem 5.5, but some more work is needed. The reason is that the sets A% defined in
(3.5) are not the natural sets that allow to control the influence of the low-frequency
modes onto the high-frequency modes in the 2D Navier-Stokes equation.

On the other hand, our formulation of Theorem 5.5 makes it quite easy to
verify that the n-dimensional Ginzburg-Landau equation (in a bounded domain)
shows exponential mixing properties, if sufficiently many low-frequency modes
are forced by the noise. We verify this in the following subsection.

6.1 The Ginzburg-Landau equation
We consider the SPDE given by

du = (Au +u — ) dt + Q dw(t) , u(0) = ug , (6.1)
where the function u belongs to the Hilbert space
H=L(-L,LI",R),

and A denotes the Laplacean with periodic boundary conditions. The symbol
@ dw(t) stands as a shorthand for

N
Qdw(t) =D giei duwi(t) ,

i=1

where {g;}I¥, is a collection of strictly positive numbers, e; denotes the ith eigen-
vector of the Laplacean, and the w; are NV independent Brownian motions (for some
finite integer V). We also denote by A; the eigenvalue of A corresponding to e;
and we assume that they are ordered by ... < Ao < A1 < 0. We will see that it
is fairly easy to construct a binding function G for which the assumptions of the
previous section hold with V' (u) = ||ul|, where || - || denotes the norm of H.

In [DPZ96], it is shown that (6.1) possesses a unique mild solution for initial
conditions ug € L>*([—L, L]™). It is straightforward to extend this to every initial
condition uy € H, by using the regularizing properties of the heat semigroup.
Thus, Assumption B1 holds and we denote by P the transition probabilities of the
solution at time ¢ starting from «. We have the following result:
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Theorem 6.1 There exist positive constants C and -y, and a unique measure p, €
1 (H) such that
IPg = pallL < Ce™" (1 + [Jul]) (6.2)

for every uw € H and every ¢ > 0.

Proof. We verify that the assumptions of Theorem 5.5 hold. The bounds required
for the verification of Assumption B2 can be found in [Cer99, DPZ96], for exam-

ple.
It remains to construct the forcing G : %2 — R and to verify assumptions B3

and B4. We consider two copies u; and ug of (6.1), with the noise dw replaced
by dw + G dt in the second copy. We also denote by o = uy — u; the difference
process. It satisfies the differential equation

o= Do+ 0— o(uf +urug +u3) +QG(u,uz). (6.3)
We can project (6.3) onto the direction given by ey. This yields
ok = (A + Dox — (Q(u% + uyug + Ug))k + qrGr(u1,u2) ,

fork=1,...,N and

ok = Ak + Dok — (Q(u% + urug + U%))k :
fork > N. We choose G, fork =1,...,N as

2+ A

Gr(u1,ug) = — Ok -
Since Gy, can only be defined this way if g5 # 0, we use at this point the fact that
the noise acts directly and independently on every unstable mode. This requirement
can be significantly weakened with the help of Theorem 5.5. We will focus next
on more degenerate problems which illustrate the power of our technique.

This choice satisfies Assumption B3. With this choice, we can write down the
evolution of the norm of g as

d|lo 2
”dt” = 2(0, Ag) — 2(0, 0(uf + urus + u3)) ,

with A the linear operator given by adding up the contribution of A + 1 and the
contribution of G. By the condition we imposed on N, there exists a constant
a > 0 such that (o, Ap) < —al|||%. Furthermore, one has

(0, 0(u? + urup +ud)) > 0.
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We thus have the differential inequality

which implies that
lo@®)Il < e=*[lo(0)]| -

This implies by Remark 5.3 that Assumption B4 is also satisfied. The proof of
Theorem 6.1 is complete. 0

6.2 A reaction-diffusion system
Consider the following reaction-diffusion system:

du = (Au+ 2u +v — u?) dt + dw(t)

) (6.4)
dv = (Av+2v+u—v°)dt,

where the pair (u, v) belongs to the Hilbert space
H=H, ®H, = L2([_L5L]a R) S L2([_L5L]7 R) .

The symbol A again denotes the Laplacean with periodic boundary conditions,
and dw is the cylindrical Wiener process on #, (meaning that it is space-time
white noise).

Notice that, because of the presence of v, this system does not satisfy the as-
sumptions stated in the papers mentioned at the beginning of this section. In other
words, even though the forcing is infinite-dimensional, not all the determining
modes for (6.4) are forced.

We take as our Lyapunov function

V(u,v) = [lulloo + llvloo »

with || - || the L norm. As in the previous subsection, one can show that with this
choice of V, our problem satisfies assumptions B1 and B2. We will now construct
a binding function G which satisfies assumptions B4 and B3. We consider, as in
(5.5), two copies (u1,v1) and (us9, vo) of the system (6.4), but the noise is modified
by G on the second copy. We also define g, = ug — w1 and o, = vy — v1. We then
have

0u = Aoy + 204 + 00 — 0u(uf + urus + u3) + Glug, ug, v1,v2) ,

) 9 9 (6.5)
Ov = Doy + 20y + 0y — 0u(v] +v1V2 +03) .
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Our construction of G is inspired from the construction we presented in Section 1.1.
We introduce the variable { = o, + 30,. Substituting this in (6.5), it defines the
function G if we impose that the equation for ¢ becomes

(=AC-¢, (6.6)

so that ||¢(#)]|? < ||¢(0)||?e~t. Notice that the function G achieving this identity
satisfies a bound of the type

2
1G] < Clleull + ool (1 + llualloo + lluzlloo + llvrlloo + llv2lloc)™

thus satisfying Assumption B3. It remains to show that Assumption B4 is satisfied.
The equation for o, reads

Oy = Aoy — 0y +( — Qv(v% + v1v2 + 'U%) .
Therefore, the norm of g, satisfies

1+ ||C(0)||2e—t _

loo@®I” < llew(O)?e™ + 5

This in turn implies, through the definition of ¢ and the bound on ||{(¢)|], that a
similar bound holds for ||, (¢)||. This shows that the bound (5.9) is satisfied. Simi-
lar estimates hold with the L norm replacing the L2 norm, and so Assumption B4
is satisfied by Remark 5.3.

In fact, a straightforward computation, which can be found in [Cer99, HaiO1,
MGO01] for example, shows that in this example, one can get a uniform estimate on
the Lyapunov function V. More precisely, there exists a constant C' such that for
all initial conditions = € H,

/% V(y)P.(dy) < C . (6.7)

Denoting by P; the semigroup acting on measures generated by the solutions of
(6.4), we thus have:

Theorem 6.2 There exists a unique probability measure u, € #1(H) such that
Pf s = s for every t > 0. Furthermore, there exist constants C and + such that

1Py — pall < Ce™*, (6.8)

for every v € .1 (H).
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Proof. Combining (6.7) with the results of Theorem 4.1 and a computation similar
to what was done in the proof of Corollary 4.3, we get (6.8) for integer times. The
generalization to arbitrary times is straightforward, using the fact that the growth
rate of the difference process (o4, 0,) (With G = 0) can easily be controlled. O

Remark 6.3 In fact, the dependence on w in the right-hand side of (6.2) can be
removed similarly by checking that an estimate of the type (6.7) is verified for the
solutions of the stochastic Ginzburg-Landau equation (6.1).

6.3 A chain with nearest-neighbour interactions

In the previous example, the noise acted on infinitely many degrees of freedom in
a non-degenerate way. As a consequence, one step was sufficient to transmit the
noise to the entire system. We will now look at a much more degenerate system,
where the noise acts on only one degree of freedom, although an arbitrary number
of modes are linearly unstable.

Our model is given by

dzo = (a’zo + z1 — 23) dt + dw ,

6.9
ir = (a® — kK))zp + Tp—1 + Tpg1 — T}, k=1,2,..., (6.9)

where @ € R is an arbitrary constant. One should think of the deterministic part
of (6.9) as a very simple model for a dissipative PDE of the Ginzburg-Landau
type. We will consider (6.9) in the (real) Hilbert space H = ¢2 endowed with its
canonical orthonormal basis {e;}32,. It is easy to verify that (6.9) possesses a
unique solution. We denote again by P; the semigroup acting on measures v €
M (£?) generated by (6.9). We will show

Theorem 6.4 For the problem (6.9), there exists a unique probability measure
ps € M1(£?) such that P;u, = . for every ¢ > 0. Furthermore, there exist
constants C' and «y such that

I1Piv — pall < Ce ",
for every v € .41 (H).

Proof. We will take as our Lyapunov function V(z) = ||z||P for some power of p
to be fixed later. It is a straightforward task to verify that the dynamics generated
by (6.9) does indeed satisfy assumptions B1 and B2 for this choice of V.

We next show that a bound of the type (6.7) holds for the solutions of (6.9),
thus yielding the uniformity in the convergence towards the invariant measure ..
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Let us define the process y(t) € ¢2 by y(t) = z(t) — w(t)eo. This process then
satisfies the following system of differential equations:

jo = a*(yo +w) +y1 — (o + w)°* ,
=@ -Dn+v+yp-—y+w, (6.10)
k=" =k )k +yk 1+ U1 —vi, k=23,....

We denote by |ly||o the norm given by sup,, |yk|. It follows from [Lun95] that

(6.10) possesses a strong solution for positive times. Furthermore, from (6.10) and
the definition of the || - ||.o-norm, we see that there are constants ci,co > 0 such

that
D_|lylloo
Dt

where D_ /Dt denotes the left-handed lower Dini derivative. A straightforward
computation shows that (6.11) implies that there exists a constant C' such such that

< —allyll3 + (1 + |w(®)?) | (6.11)

ly1/2)lo < C sup (1 + |w(®)]),
te[0,1/2]

independently of the initial condition. In order to conclude the proof of the estimate
(6.7), it suffices to show that there exists a constant C such that

Elly(1/2)[ < C(1 + [[y(0)lloo) -

This follows easily from the dissipativity of the nonlinearity in # and the fact that
the semigroup generated by the linear part of (6.10) is bounded from £ into ¢2.

It remains to verify that the assumptions B1-B4 are indeed satisfied for some
binding function G. This, together with the uniform bound obtained above, shows
that the conclusions of Theorem 6.4 hold. As for the toy model presented in Sec-
tion 1.1, we consider a process y € £2 governed by the same equation as (6.9), but
with dw replaced by dw + G(z,y)dt. We then introduce the difference process
o = y — x, which is given by the solution of

60 = a’00 + 01 — 0o(zh + Toyo + ¥5) + G(z,y) | (6.12)
ok = (a® — KMok + ok+1 + 0k—1 — 0k(Th + Tryx + V7 -

The aim of the game is to find a function G for which o(t) — 0 as ¢ — oo. We can
split (6.12) into “low modes” and “high modes” by introducing

ko = inf{k > 0| k* —a® >3} .

At the level of the Hilbert space ¢2, we set £2 = H @ Mg, where H; ~ R
is generated by ey, ...,ex,—1 and Hy is its orthogonal complement. We denote
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by o1, and og the components of o and by Ay the restriction (as a symmetric
quadratic form) of the linear part of (6.9) to H g. It is by construction easy to see
that

(om, Anon) > llou|* -
As a consequence, we have for ||z ||? the following estimate:

1 t
loa@)|* < e *llen(0)|” + Z/ e *1Gu(s)* ds (6.13)
0

where we defined (; = gk, 1. (The reason for renaming o, 1 this way will
become clear immediately.) It remains to construct G in such a way to get good
estimates on ||o(¢)||?. In order to achieve this, we use again the same method as
for the first toy model. The variable ¢; obeys the equation

C1 = C10k,—1 + Ok, + Ok, —2 — Qk*—1($i*—1 + Tk, 1Yk, —1 T+ y;%*_ﬂ ,

with some constant ¢; € R. We thus introduce a new variable {5 defined by

Co=(c1+ )0k —1 + 0k, + Oku—2 — Oke—1(Th 1 + Tho1Yka—1 + Yo _1) -

It is important to notice two facts about this definition. The first is that it yields for
|¢1]? the estimate

1 t
GOF < e P + 7 [ e e ds. (6.14
The second is that {5 can be written in the form

CQ = Ok.—2 + QQ(Q,-’L'ay) )

where 9, is a polynomial depending only on components o;, ; and y; with ¢ >
k. — 1, and such that each of its terms contains at least one factor g;.

Now look at the equation for ég. It is clear from the structure of ¢, and from
the structure of the equations (6.9) and (6.12) that it can be written as

G2 =—C2+ (3,

where
(3 = Ok.—3 + Q3(0,z,9) -

This time, the polynomial Qs depends only on components with an index i >
k. — 2. This procedure can be iterated, yielding a whole family of variables

G = ok, —1 + Qo z,y) , (6.15)
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where the Q; are polynomials depending only on indices ¢+ > k, — 1 + 1, and
containing at least one factor p; in each term. Furthermore, one gets for every (;
the estimate

GO < TGO + i /O () s (6.16)
Notice that (6.16) is valid for [ < k. For [ = k., we have
Ch. = Qu.t1(0,,y) + Glz,y) . (6.17)
It thus suffices to choose G in such a way that (6.17) becomes
Sk, = —Ck. - (6.18)
Denoting by ¢ the vector (1, ..., (k,, we get from (6.16) and (6.18) the estimate
IC@II? < Ce™ICO)]17 (6.19)

for any v € (0,1). Plugging this into (6.13) yields for ||og|| the estimate
ler®I? < Ce™ " (lenO)II* + ICOI?)
< Ce "leO)|*(1 + |z + [y,

for some constants C, y and p. It remains to get an estimate on ||z ||. From (6.19)
and the definition of (;, we get immediately

oke—1 (&) < Ce™[0(0)]12(1 + [|l=(0)]| + [ly(0)]))" .

From the definition of (-, we get

ok, 2@ < C(1C2()1® + | Qa(et), 2(t), y@)) -

But we know that Q5 only depends on components of g, z, and y with an index
1 > k4 — 1. These are precisely the components of ¢ on which we already have an
estimate. We thus get

lok.—2@)I” < Ce™lo(O)]1*(1 + [|z©) ]| + Ily(O)|| + [lz@®)[|) .

for some other power p. Here we used the fact that y(¢) = z(t) + o(t) to get rid of
|ly(#)|| in the estimate. The same reasoning can be applied to g, _3, and so forth
down to gy. We finally get

le@®I* < Ce™ oI (1 + |z )l + ly O + llz®)I)” . (6.20)

for some (large) power of p. We thus verified (5.9a). The bound (5.9b) is obtained
in the same way, by noticing that we can as well get the estimate

ler@I1* < Ce™" o> (1 + [l2O)]] + Iy O + y®I)” .
instead of (6.20). The proof of Theorem 6.4 is complete. O
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Remark 6.5 The whole construction is strongly reminiscent of what was done in
[EPR99] to control a finite Hamiltonian chain of non-linear oscillators with nearest-
neighbour coupling driven by thermal noise at its boundaries.

Remark 6.6 The linearity of the nearest-neighbour coupling is not essential for
our argument. We could as well have replaced (6.9) by
dzo = (a’zo + Vi(z1 — z0) — Vi (z0)) dt + dw ,
g = (0 — k) + Va(ze-1 — k) + Vo (@rs1 — zx) — Vi) ,
with V; and V, two polynomial-like functions, i.e. smooth functions such that
d"Vi(z)
dx™

for some «; > 2. Imposing the condition V'(z) > ¢ for some ¢ > 0 yields an
effective coupling between neighbours at every point of the phase space. This is
sufficient to apply our construction.

S for |z| = o0,
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