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Abstract

We derive the first two terms in anexpansion for the invariant measure of a class

of semilinear parabolic SPDEs near a change of stability, when the noise strength
and the linear instability are of comparable ordér This result gives insight

into the stochastic bifurcation and allows to rigorously approximate correlation
functions. The error between the approximate and the true invariant measure is
bounded in both the Wasserstein and the total variation distance.
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1 Introduction

The concept of stochastic bifurcation is still a topic of ongoing research, and there
are several open questions on the effect of small additive noise on a determinis-
tic bifurcation. The only fairly complete picture available so far applies to pitch-
fork bifurcations in one-dimensional stochastic ordinary equations (SODES), see
[CIS99] for a classification of bifurcations. There exist several concepts of bifur-
cation within the framework of random dynamical systems, and we are not going
to discuss them in detail here (seg.[Arn98] for an overview). One such concept
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is a phenomenological bifurcation, where the density of a unigue invariant measure
changes its structure @.number of maxima).

For one-dimensional SODEs there is the result of [CF98] showing that only a
phenomenological bifurcation can occur. Their result mainly rules out changes in
the structure of the random attractor, which would be a dynamical bifurcation, in
the sense of [Arn98].

Nevertheless for SPDEs there are no analogs of these results. Only for mono-
tone SPDEs results are established ruling out the possibility of a dynamical bifur-
cation (see [CCLRY]). The question of defining the analog of a phenomenological
bifurcation in this setting is completely open, one problem being the lack of refer-
ence measure in infinite dimensional spaces.

Our result approximates the fine structure of the invariant measure. This can
be used to describe phenomenological bifurcation for SPDEs. The main tool is a
multi-scale approximation of the dynamics using amplitude equations. This is a
fairly natural approach, as the separation of time-scales is naturally present in a
neighbourhood of a deterministic bifurcation.

The amplitude equation is a stochastic ordinary differential equation describ-
ing the dynamics of the dominating modes of the SPDE living on a much slower
time-scale. A rigorous justification of the approximation of solutions of SPDEs by
the solutions of the corresponding amplitude equation was obtained in [BMPSO01,
Bl603a]. Unfortunately, these results were only capable of describing the transient
dynamics of the SPDE.e. the dynamics on time scales of the order of the charac-
teristic time of the linear instability. However, we show in this paper that the ampli-
tude equation is also able to describe the long-time behaviour of SPDEs. Our main
results show that we can approximate the invariant measure of the original SPDE at
first order by the invariant measure of the amplitude equation, which is supported
on a finite dimensional subspace. Furthermore, we show that the second order cor-
rection is given by a Gaussian measure supported on the orthogonal complement
of that space. Note that in the deterministic case, the approximation of solutions to
PDEs by the solutions of a suitable amplitude equation is well understood. In par-
ticular, the case of unbounded (or very large) domains, which is beyond the scope
of this paper, can be justified rigorously, s=g.[KSM92, Sch96].

Let us now make the considerations above more precise. We consider in this
paper SPDEs of the type

Owu = Lu + 2 Au + F(u) + %€, (1.1)

whereL is a dissipative operator with finite dimensional kernéldv is a small
(linear) deterministic perturbationF is a stable cubic nonlinearity, ardis a
Gaussian noise which will be taken to be white in time and can be either white
or coloured in space. We will furthermore denoteXythe Hilbert space in which
we consider initial conditions and solutions to (1.1). There are many examples of
equations of that type in the literature. For instance, the well-known Ginzburg-
Landau equation

o = Au + vu —u 4 o€
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and the Swift-Hohenberg equation
o = —(A + 1)*u+vu —u® + o€,

which was first used as a toy model for the convective instability in a Rayleigh-
Bénard problem (see [HS92)), fall into the scope of our work when the parameters
v and o are small and of comparable order of magnitude. Both equations are
considered on bounded domains with suitable boundary conditeogsp€riodic,
Dirichlet, Neumann, etc.). The boundedness of the domain is essential, since all of
our proofs rely on the existence of a spectral gap of order one in the linear part.
Another example arises in the theory of surface growth in the model of Lai and
Das-Sarma [LDS91]. Herk is the height-profile of a growing surface given by

Oth = —A’h — vAh 4+ V - (|Vh|>Vh) 4 o€,

subject to periodic boundary conditions on a square and vanishing spatial mean for
h. In this case’A splits into two parts, one belonging foand one ta:2 A.

Our first main result (cf. Theorem 5.2), which is based on the transient approx-
imation result (cf. Theorem 3.8), is the following. L&t be distributed according
to an invariant Markov measure of (1.1). Then

Uy = ay + 210, + O(37)

wherea, is distributed according to the invariant measure for the amplitude equa-
tion (cf. section 2) on the finite dimensional spaeX, with P, being the pro-
jection onto the kerneN of L. Moreover,i), is a stationary Ornstein-Uhlenbeck
process onP; X, wherePP; = I — P, is the projection onto the stable (or fast)
modes. In contrast to that, the projectiBamaps onto the slow modes, which live
on a much slower time-scale = £2t.

The O(¢3~)-term is interpreted as the Wasserstein distance of the correspond-
ing measures, wher@(c*>~) meansO(e~*) for anyx > 0. Note that Theorem
5.2 is proved in a slightly different scaling.

The second result (cf. Theorem 5.3) establishes that the lawy af c1), is
approximately given by the product measure,

pasteds _ pas ® P+ + 0(62_) )

This is a remarkable fact as, in gener@al,and, are not independent. This ap-
proximate independence of the “slow modes” and the “fast modes” in the invariant
distribution results mainly from a separation of timescales in their approach to
equilibrium.

Another surprising fact is that, due to the cubic nature of the nonlinearity, no
second order correction iR, X is necessary. This changes dramatically when
one tries to go to higher order corrections. Then, the cubic nonlinearity couples
strongly the dynamics i, X and P;X. Nevertheless we will give formal argu-
ments in section 2 that indicate what the third order correction should be. This
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formal approach also indicates that it is not trivial to extend our approach to third
order corrections.

Under stronger assumptions on the non-degeneracy of the noise process, we
show in section 6 that similar approximation results hold in the much stronger total
variation distance. However, since the total variation distance between two mea-
sures does not depend on the distance with which the underlying space is endowed,
the error between the invariant measure of the SPDE and its approximation scales
in a different way withe. Our result is then

|PIPY — POy = O(e27),  ||P™ — PP @ P"Y||py = O(e17) . (1.2)

Recall the following interpretation of the total variation distance. Given two prob-
ability measureg andv, one can build two random variablesandy with respec-

tive lawsy andv, such thaP({z = y}) = 1—1||u—v||7v. In particular, the second
estimate in (1.2) implies that the small scale spatial structure of stationary solutions
of the original SPDE are indistinguishable from those of the Ornstein-Uhlenbeck
process21,.

The paper is organised as follows. In section 2 we give a formal derivation of
the amplitude equation and of the higher order corrections. In section 3, we give a
precise statement of the assumptions that will be used throughout the paper, and we
give a rigorous formulation of the approximation result for the transient dynamics
of (1.1) (cf. Theorem 3.8).

The proof of the approximation result is split into several steps, which are all
contained in section 4. Subsection 4.1 provides essemtigiori bounds on the
solutions and the invariant measure of the SPDE (1.1), while subsection 4.2 gives
essential error estimates for the residual. Finally the proof of the approximation
result is contained in subsection 4.3.

The main results on the structure of invariant measures of (1.1) are discussed
in section 5, while the proofs are given in subsections 5.1 and 5.2. Finally, the total
variation estimates (1.2) are discussed in section 6.

2 Formal Derivation

Let us first discuss a formal calculation giving approximations of our original equa-
tion (1.1). We make the ansatz

u(t) = ea(e®t) + 2b(e?t) + 3¢(€%t) + 2(t) + 3p(t) + O(e?) (2.2)

with a,b,c € N = P.X andyp, € S = P,X. Due to the linear damping of order
one inS, we expect the modes ifi to evolve on time scales of order one. Af,
on the other hand, we expect the modes to evolve on the much slower time-scale
T = €%t, since the linear operator acting dfis of orders2, so its characteristic
time is of order=—2.

Plugging the ansatz (2.1) back into (1.1) and expanding in ordets ok
obtain first, by collecting all terms of ordet in A/,

Ora(T) = Aca(T) + Fe(a(T)) + 07B(T) . (2.2)
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Here, 3(T) = ¢P.W (¢ ~2T) is a Wiener process i with distribution indepen-
dent ofe, and we writed. = P, A and*, = P.F for short. This approximation is
calledamplitude equationand it is well-known for many examples in the physics
literature. It was rigorously verified in [BD3a] for a large class of equations.
Let us now turn to higher order corrections. Collecting terms of ordén S
yields
Oup(t) = Lsip(t) + P(1) - (2.3)

A second order correction was already used ird{Eib] to deal with quadratic non-
linearities. However, the result there was only an approximation in lowest order, as
opposed to the higher order approximation derived here.

The next step is to compute the other second order term involvikgrst we
can solve (2.3) fot) using the variation of constant formula. Then we resgale
the slow time-scale to obtain formally that

W(Te~?) 2 e L7 P&E(T) + “higher order terms” .

As a consequence, the terpy)(T'=—2), when viewed on the slow time-scale, gives
a contribution of ordet® instead o&*. Using this, we obtain for terms of ordet
in NV
orb(T) = Acb(T) 4 3Fc(a(T), a(T),b(T)) . (2.4)
Since typical initial conditions for (1.1) can be written@®) = ca(0) + £2(0),
one can choosi0) = 0, and thereforé vanishes identically.
Turning again taS and gathering terms of ordef we obtain

Orp(t) = Lsp(t) + As ale’t) + Fo(a(?t)) .

Hence,y lives basically on the slow time-scale. Definiggl’) = ¢(c2T) we
obtain

O(T) = LY (Asa(T) + Fy(a(T))) + “higher order terms”. (2.5)
Finally, terms of ordee® in A/ (and using the fact that= 0) give raise to

Orc(T) = Acc + Acp + A L7 Po&(T) + 3F.(a, a, c) + 3F(a, a, )
+3Fc(a,a, Ly ' PE(T)) + 3Fe(a, (e °T), (e °T)) . (2.6)

At this point, the ansatz (2.1) starts to show its limitations. Siadves (up to
higher order terms) on a finite-dimensional spacealinas on " by construction,

(2.5) and (2.6) seem to indicate that the solution of (1.1) is approximated at order
e* by £24(t) on the orthogonal complement of a finite-dimensional subspadg of

On the other hand, (2.6) seems to be of rather limited use for studying the structure
of the invariant measure of (1.1) since, because of the presence of the instability
A. in the linear equation fot, the very existence of an invariant measuredas

not clear.
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Notice furthermore that expression (2.6) still depends,oms it is not clean
priori what would be the limit ofF,(a, ¥(¢ 2T,y (¢~2T)) ass — 0. If we use the
previous formal argument, we would obtain a term of or@¢&?), which however
does not make sense, as it involves squares of Delta-distributions. Instead another
formal argument indicates that one should have

Fela, (e 2T),v(e2T)) = ¥[a] + “higher order terms”,

for some linear operatob : N' — N.

For these reasons, we limit ourselves to the study of the expansion (2.1) up
to terms of ordee?. Our main approximation result can then be summarised as
follows. Given an initial condition of the form(0) = ca(0) + £2¢(0) with a(0)
and1)(0) of order one, the representation

u(t) = ea(e®t) + 2(t) + O ,

wherea € N is a solution of (2.2) and) € S is an Ornstein-Uhlenbeck pro-
cess given by (2.3), holds up to times= O(¢~2). The rigorous statement and
verification of these results can be found in Theorem 3.8.

3 Main Assumptions and the Approximation Result

In this section we formulate the main assumptions needed for our proofs, and state
the approximation result, which verifies the formal calculation of the previous sec-
tion, at least on large transient time-scales.

Let X be some fixed separable Hilbert spake Throughout this paper, we
will always write || - || for the norm and-, -) for the scalar product itX, unless
otherwise stated. We denote 8y X, Y) the space of continuous linear operators
from X into Y endowed with the usual operator norm.

Assumption 3.1 The operatorl. on X has compact resolvent and generates an an-
alytic semigroup{e!*};>¢ in X. DenoteN" = ker(L) and assume thatim(\) =

n. We defineP. as the orthogonal projection ontt’, we setP; = I — P., and we
assume that'” and the projectiorP, commute. We also denote the rangé’pby

S, sothatX = N & S. We assume

1L Pyl px.x) < e”™ forallt > 0. (3.1)

We define the fractional spacé® for a > 0 as usual byX“ = D((1 — L)®) with
norm| - || = ||(1 — L) - || and scalar produgtu, v), = ((1 — L)*u, (1 — L)*v).
The spaceX ~® = (X )’ is the dual ofX* with canonical norm. See for example
[Lun95] or [Paz83]. It is well-known that'” extends to an analytic semigroup
on all X%, o € R. Note furthermore that obviousl{’ c X for anya > 0, as
(1—L)*N =N.

The conditions on the semigroup readily imply (see Lumer-Phillips theorem in
[Paz83]) thak!” is a contraction semigroup aki and hencd. a dissipative oper-
ator. To be more precise we have(Re,v) < 0 for all v € D(L) and moreover
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Re(P;Lv,v) < —w|v||?, asL + w generates a contraction semigrouprsSince
LP. = P.L = 0, this also implies thal is the only point in the spectrum éfright
of the line Red) = —w. It is easy to verify that this result remains trueXrt.

It is a well-known fact that forx € [0, 1) there is a constan¥/ > 1 such that

el g, x) < M1 +t7%) (3.2)

forall ¢ > 0. )
We can combine this with (3.1) to obtain for sohe: © < w andM > 0 that

|Pse™ || pxx—axy < ML +t")e™™ forall ¢>0. (3.3)

All we have to do is using?ett = ePtE Poedt for p,q € (0,1) with p + ¢ = 1.

Nevertheless, we will assume without loss of generality ¢hat w and M = M.
Moreover, we immediately get that under Assumption 3.1 we can extetal

an orthogonal projection i ~® onto\/, which commutes with the semigroufd”

on X ~%. This can be easily seen for example by using the representation of the

resolvent with the semigroup in addition with Dunford-integrals.

Assumption 3.2 The linear operatorA belongs toL(D(L), X). Moreover, there
exists a constant’y > 0 such that

(Av,v) < Ca(||v]|* + R&(—Lv,v)) forall ve D(L).

Finally, we assume that one can extefito a bounded linear operator frol —
X~ for somex € [0, 1).

The assumption thatt € L£(D(L), X) implies thatA is relatively bounded with
respect ta, i.e.there is a constart’ > 0 such that| Av|| < C(||v]| + || Lv||)-

Assumption 3.3 The functionF : X3 — X~ for somea € [0, 1) is continuous,
trilinear, and symmetric. Furthermore, its restriction 1o(L) is continuous from
D(L)? into X.
Using the shorthand notations(u) = F(u, u,u) and F, = P.F, we assume
that
<‘7:c(vw Ve, We), wc> <0 (3.4)

for all v.,w. € N \ {0}. We finally assume that there exist constakitand
~vr, € [0, 1) such that, for alb > 0 sufficiently small,

(F(v+ ¢),v) < K6* + K||p||* — 6]|v]|* — yLRe(Lv, v) , (3.5)

foranyp,v € D(L).

The assumption on the restrictidh : D(L)?> — X being continuous is mainly
for convenience. It simplifies the proof of tleepriori estimate (Theorem 4.1)
significantly.
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Moreover the assumption th&t is cubic could be relaxed by adding terms of
higher order. Adding terms of degree larger or equal to five does not change any
of the main results (under suitable stability assumptions). However, fourth order
terms induce a nonlinearity in equation (2.4) and therefore complicate the analysis
considerably. In particular, they induce second-order correctiofs in

Assumption 3.4 The noise process is formally given by= QoW , whereWW

is a standard cylindrical Wiener process X with the identity as a covariance
operator and@ € L(X, X) is symmetric. Furthermore, there exists a constant
& < 3 such that

11 — L) *Q|lnsex) < o0 ,
where|| - ||sx) denotes the Hilbert-Schmidt norm of an operator franto X .

Remark 3.5 Straightforward computations, combined with the properties of ana-
Iytic semigroups allow to check that Assumption 3.4 implies the following:

e The stochastic convolutiol.(t) = [i ett=9)QdW(s) is an X-valued
process with Blder continuous sample paths.

e There exist positive constantsand-y such that
| Psel*Qllns < C(1 +t~%)e ", (3.6)
holds for everyt > 0.

Remark 3.6 Note that we daot assume thaf) and L commute. Hence, itis in
general not true tha® and P. commute. Therefore, the noise procesBe@W
and P,QW will not necessarily be independent.

Using Assumptions 3.2, 3.3, and 3.4 itis straightforward to verify for any (random)
initial condition u(0) € X the existence of a unique global mild solutione
C°([0, o0), X) of (1.1),i.e. a solution of

u(t) = eu(0) + /0 t D22 Au(r) + F(u(r))) dr + Wi (t) , (3.7)

where the stochastic convolutid#i;, was defined in Remark 3.5.

Itis well-known under our assumptions that (1.1) or (3.7), respectively, exhibits
a not necessarily unique invariant measure. This is quite standard to check, using
for instance the methods of [DPZ96]. The main ingredients are an a priori bound
in X (this will be proved in Theorem 4.1), and a bound in saXiewith smally <
1 — «, using the methods of Lemma 6.8. The latter bound yields the compactness
required by the usual Krylov—Bogoloubov argument.

Depending on the degeneracy of the noise, it is usually possible to check that
the invariant measure is also unigue, using for example the results from [DPZ96,
KSO00, EHO01, Mat02, Hai02]. The next assumption is only required for the approx-
imation results concerning the invariant measure, not for the approximation of the
transient dynamics.
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Assumption 3.7 The Wiener procesB.QW on\ is not degenerate, i.62.Q%P.
has full rank.

Note that Assumption 3.7 together with Assumption 3.3 is sufficient for the ampli-
tude equation to have a unique invariant measure that is exponentially attracting,
seee.q.[MT94].

We consider solutiong of equation (1.1), with initial condition(0) = ug
satisfying for some family of positive constadis,,, p > 1}

Elluoll’ < Coe? and E||Pyuo|]P < C,e?. (3.8)

By Theorem 4.1 we will see that any initial conditiay distributed according to
an invariant measure of (1.1) is admissible.
We define the stochastic process C°([0,7],\) as the solution to

ora(T) = Aca(T) + Fe(a(T)) + 0rp(T) , (3.9)

with initial conditiona(0) = e~ P.ug, where we define@(T) = ¢ P.QW (¢ ~2T)
as in section 2. The procegsis a Brownian motion in\" with non-degenerate
covariance matri’.Q? € L(N, N). Furthermore we set

elt) = ale®t) .
We also define), by 1,(0) = ¢ =2 P,ug and
s(t) = e (0) + PWL () - (3.10)
Our approximation to the solution of (1.1) is then given by

D(t) = expelt) + s (t) - (3.11)

Note that we do not add any second order termVinwhich was already justified
by our formal calculation. Moreover, due to Remark 3.6nd; are in general
notindependent. They are independent, for exampl&, fommutes with) and
15(0) is independent od(0).

The main result showing that transient dynamics of (1.1) is well approximated
by ¢ is the following theorem and corollary. The proof will be given in subsection
4.3.

Theorem 3.8 Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold anduldéte the mild
solution of (1.1) with initial valueu satisfying (3.8). Defing by (3.11) witha
given by (3.9).

Then for allp > 0, x > 0 andTy > 0 there is a constanUzpp explicitly
depending o and growing exponentially witli, such that the estimate

P( sup [ju() — v@)] < *) > 1 - Cape?

te[0,Toe—2]

holds fore > 0 sufficiently small.
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Combining this approximation result with the a-priori bound (cf. Theorem 4.1) on
the moments, we easily obtain:

Corollary 3.9 With the same notations and assumptions as in Theorem 3.8, one
has

E( sup [lu(t) — v()|”) < Ce¥
te[0,Toe—2]

This result will be proved in the following section. Note that it contains only infor-
mation on transient time scales. The approximation result for the invariant measure
(and thus for an infinite time) is stated and proved in section 5.

4 Proof of the Approximation Result

4.1 A-priori bounds on the invariant measure and solutions

In this subsection, we show that the invariant measure for (1.1) and the law of
solutions from a certain class are concentrated on functions that are ofsarder
N and of order? in S.

Theorem 4.1 Let Assumptions 3.1, 3.2, 3.3, and 3.4 be satisfiedu| &k anX -
valued random variable distributed according to an invariant measure for equation
(1.1). Thenforalp > 1 there are constants’,, > 0 explicitly depending op such
that

Ellus|lP < Cpe? and E||Pouy|P < Cpe?? (4.1)

for anye € (0, 1). Moreover, there are constan€s, depending orC;, but not on
g, such that for any mild solution of (3.7) with initial conditiai(0) fulfilling (4.1)
we have

SUPE|[u(t)[|P < Cje? and  SUE| Pou(t)||P < C)e*.
t>0 t>0
Chebychev inequality immediately implies:

Corollary 4.2 Under the conditions of the previous theorem. Forsall> 0 and
p > 1thereis a constant’ > 0 such that for alle € (0, 1).

P(||Pouy|| < €77 and || Pyuy|| < 27F) > 1 — CeP.
Proof of Theorem 4.1Define the norm irC?(2, X) by
lull 2o = (Elul/P)"/* .
Consider now a mild solution(t) of (1.1) with«(0) = wu,. Obviously,
|lu()||cp = ||tx||cp , forallt > 0.

Define nowL, := L+¢2A—~¢e? for v > 0 to be fixed later. Sincd is a relatively
bounded with respect tb by Assumption 3.2, we immediately get from [Kat80,
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Thm 1X.2.4] for sufficiently smalk > 0 that L 4 2 A generates an analytic semi-
group. Moreover, following the proof [Kat80, Thm 1X.2.4] to reveal the precise
values of various constants, it is easy to verify that there exists a sufficiently large
(but independent aof) constanty > 0 such thatl.. generates a bounded semigroup
fore < 1.
Define now
o(t) := u(t) — e2Wr_(t) .

Due to the stability of the semigroup and the fact #af. is Gaussian, the stochas-
tic convolution satisfies

IPsW ()|lce < Col|PsWr. ()| 2 < C, forany t>0, 4.2)

and
WL (®)ller < ColWr. ()| 2 < Cpe™! forany t>0,

where the constants depend mrbut can be chosen to be independent.of his
yields immediately
[oller = llusllcr — Cpe (4.3)

Moreover, a formal computation starting from (3.7) shows that we can differentiate
v with respect ta, yielding

O = Lv + e Av + F(v 4 W) + Wy, . (4.4)

This equation is only valid in the weak formulation sineez D(L) in general.
Therefore, the previous and the following argument are only formal, but can be
justified by using smooth approximations1df, given byWw®*) in X. Hence, we
have W{?(t) in D(L). Moreover, by Assumptions 3.3 and 3.2 we immediately
get that the corresponding solutioff) is in D(L). Our arguments are valid for
the approximations®) because they are strong solutions of (4.4) in the classical
sense. It suffices then to pass to the limit.

Taking (-, v) on both sides of (4.4) and using (3.5) for= 22 together with
Assumption 3.2, we derive for sufficiently smalbk> 0

$0|v||? < K6% — 68[jv||* + C¥ W _||* + %||v]|? + C° | Wy ||?
— (v — €2Ca) - Re(—Lv, v)
< =22 + CEHWr.|* +€2)?.

A comparison argument for ODEs immediately gives
t 2
ol < a2+ C [ e AW @) + ) dr
0
Taking the£?/2-norm on both sides yields

t
ol < e uls+C [ e ar- e
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Hence, 2 2
[vller < e uglcr + C(1 — e 22 e

Using (4.3), we get
sl er (1 — e < C(1 — 7272 4 Ce (4.5)

and the first assertion follows by choosing: 2.
For the second claim we get from the mild formulation (3.7)

1Peu(t)]| < Me™"|| P || + 2| B,WL(2)l]
t
+C [ =D )] + )] dr
0
Taking the£P-norm and using (4.2) yields

| Psusl|cr < Me™™ || Psuyl|co + Ce?

t
O fuller + HU*II‘ZBP)/O (1+7 e ™ dr.

Taking the limitt — oo and using the first part we deriePsu, | c» < Ce?.
For the second part of the theorem, we can proceed similarly to the first part.
First, instead of (4.5) we derive

[u@)l e < e = [u(0)]| o + CA — e 212 4 Ce? .

Hence, by (4.1) there are constafts> C,, such that|u(t)||z» < C, forallt > 0.
Concerning the estimates &) we easily derive

1Psu(®)| v < MCpe? + C 4 C / L+ 7)™ dr - 3Gy + Csp)
0

Hence, we easily find a family of constanﬁ’§ depending (among other constants)
explicitly on C,, Cy, andCsy, such that| Pyu(t)||z» < €, for all t > 0 and for all
p>1. O

4.2 Bounds on the residual

In this subsection, we consider solutiansf equation (1.1), with initial condition
u(0) = ug satisfying condition (3.8). We prove a sequence of lemmas establishing
bounds on the approximatiafn(t) := ev.(t) + £2v4(t) given in (3.11).

In order to prove that) is a good approximation af, we have to control the
residual ofy’, which is defined by

Res()(t)) := —(t) + et (0) + /0 t DL A (7) + F(Wp(7)))dr + e2Wi (1) .
(4.6)
First we establish some bounds on our approximatipfrom (3.11).
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Lemma 4.3 Let Assumptions 3.1, 3.2, 3.3, and 3.4 be satisfied and fix some time
To > 0. Moreover, consider an initial condition, fulfilling (3.8). Then for every
p > 1 there exists a constaidt, such that

E(_sup [la(D)[") =E( sup [le(IP) <Cp-
T€[0,Tp] t€[0,Toe—2]

Moreover, for every > 1 andk > 0, there exists a constaiit depending orp

andx such that

E( sup [llF) < Cex.
te[0,Toe 2]

Again Chebychev inequality immediately yields the following corollary.

Corollary 4.4 Under the conditions of the previous theorem. Forsalh- 0, T >
0 andp > 1 there is a constanf’ > 0 such that

P(Jle®ll < =" and||s(t)| <~ forall t € [0, Toe™2]) > 1 CeP .

Proof. Define the norm inC?(Q2, L>°([0, Tpe 2], X)) by

Wl = (B supucolr)”” @.7)

te[0,Toe—2]

and similarly for functions depending on the slow time-scale, where the supremum
is taken ovefl’ € [0,Tp]. From the boundedness of the semigroup generatdd by
we get

sl crzoey < Me™2(|Psuol| o + | PsWi || erze) |

where, by assumption (3.8), one hgB,ug||.» < Ce2. Moreover, the bound
| PsWp || coqroey < Ce™*/P is given by standard arguments using for instance the
factorisation method of Da Prato and Zabczyk [DPZ92]. This implies the second
assertion.

For the first assertion defire= a — _; depending on the slow time-scale,
wheref_1(T) = [ e=T=9)dj(s). Itis easy to check thatis differentiable with

orb=A.(b+pB-1)+F(b+B-1)+B-1.

By standard argument8j3_1 || cr(z<) < C where the constant dependsfnand
p. Using (3.5) and4d,. € L(N)

Ar|b||> < C|b||? + 2(Fu(b + 1), b) + C||B-1]>

4.8
< OBl + O+ 1|2 “9

Gronwall’s inequality yields fot € [0, Tp]

T
BT < €T llaoll* + C [ O+ 5 2
0
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Taking the£P/2(L>°)-norm and using (3.8) implies
bl Zn(zy < €“™llagl| +C < C .

Hence,
lallzepoey < 1[0l ceoey + (|81l crre=) < C',

which concludes the proof of Lemma 4.3. O

Note that the constants in the previous proof grow exponentialliyinTo avoid
this we could use the method of the following lemmas to obtain a logarithmic
growth rate instead.

If we do not consider the supremum under the expectation, then the bound is
uniform inT" or t, as shown in the following lemma. Moreover, forthe strong
dissipativity properties of the cubic nonlinearity allows one to prove a slightly
stronger result, where the bound is independent of the initial condition.

Lemma 4.5 Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold and fix someZime 0
and somep > 1. Then there is a constadf > 0 such that for any solution of
(3.9)

sup Ella(D)|P < C,

T>T,

uniformly in the initial conditiorz(0), provided||a(0)|| < oo almost surely.
Moreover, for any initial conditiony fulfilling (3.8), we obtain for any > 1

SUPE |15 ()| + supE|la(T)||P < C,, ,
>0 T>0

with constants depending on the family/, }, but independent af and .
Proof. Using (3.4) we obtain for any € X with ||b]] = 1 that
(Fob),b) < K&* — 6 < —5/2

for sufficiently smalls > 0. Hence, asF is trilinear (F.(b), b) < —2|b||*. Using
(4.8) and defining as befote= a — (3_1, we thus get the differential inequality

Ar|bl|* < =S|blI* + Cs(1 + [|18-1]1%)?, (4.9)

for some constant depending explicitly &n
Define nowK3(Ty) = SUpre(o.1,) Cs(1+116-1(T)[1)*. Hence, fofT" € [0, Tp]

we getdr||b)|> < —3[|b|* + K3(Tp), and we either obtainb||* < 4K3/6,

or ||b||? is strictly decreasing witlr||b]|> < —2|b|[*. Thus||b|> < 4/(0T +

(4/]|b(0)]|?)) < 4/(T6). Finally, for anyT € [0, Tp]

4 AK(Ty)

la(@)| < max{ s —

1/2
P B
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Hence,||a(To)| z» < C(Tb,p), with constant independent ef0). This immedi-
ately implies the claim.

For the second part, the bound eriollows in a similar way than in the first
part. The bound ony, is straightforward, sincé P;W(t)||c» < C uniformly in
t>0. 0

The following lemma now gives a bound on the residual.

Lemma 4.6 Let Assumptions 3.1, 3.2, 3.3, and 3.4 be satisfied. Moreover, consider
an initial conditionuy fulfilling (3.8). Then for allTy > 0, p > 1, andx > 0 there
is a constant” > 0 depending explicitly op such that

E( sup HPsRes@b(t))Hp) < Ce?=m)
te[0,Toe—2]

holds for alle < 1.

Proof. From (4.6) and the definition af,

P,Res()(t)) = /0 t DL (2 Ay(r) + F(p(r))) dr .

SinceA andF' are bounded fronX to Y, we obtain

IPRes¢®)] < C /Ot(l + (= 1) CE @+ Y@ dr -
Therefore
| P.Res@(t)]|zrze) < C /0 T e dr (Pl + ) -
and the claim follows from Theorem 4.3. 0

Lemma 4.7 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 are satisfied. Moreover,
consider initial conditionug as in (3.8). For everg} > 0, everyp > 0, and every

k > 0, there exists a constamiires > 0 depending explicitly op such that, for
everye € (0, 1), the residualP.Res{)(t)) satisfies the bound

E( sup [PRes@®)|F) < Cres™ . (4.10)
te[0,Toe 2]

Furthermore, the residual is differentiable ipi.e. P.Resg) € C*([0, Tpe 2], N)
P-almost surely.

Proof. Throughout this proof, we will say that a stochastic proces$t) }>o is
O(e") (or of ordere™™) if for all p > 1 andx > 0 there is a constant such that
| X || zr(oey < Ce™", and similarly for functions on the slow time-scale With
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this notation we know by Lemma 4.3 thay is of orders?—, butq), is of order1l
oreY.
Now (4.6) and (3.9) implies
't
P.Res()(t)) = 54/ (ACIZ)5+3.7:C(T,Z)C, Ve, Ys)+3eFe(Ve, s, ws)+52]:c(¢s)) dr .
0
(4.11)
Note first that by definition). and; are at least continuous in time. Moreover,
sinceA. and.F, are continuous, it is obvious that the integrand %[0, Toe 2], V).
Hence,P.Res()) is differentiable.
To bound (4.11) note first that by Assumption 3.3 and Lemma 4.3, the two last
terms are of order®~ ands*—, respectively.
Using the definition oty from (3.10), we obtain for the first term

t t t T
_ TL (r—m)L
/OAcwsdT—/O Ave wS(O)dTJr/O AC/O =L PO dW () dr
= AL HI — eF)hs(0) + AL PsQ(W () — WiL(2))

by using a stochastic Fubini theorem. Since any finite-dimensional projection of
the cylindrical Wiener procesl’ (thus in particularA.L; ! P,QW) is of order
¢~17, all of the above terms are of ordet~ or even smaller. Note that, by Theo-
rem 4.1,)4(0) is of orderl.

We expand the remaining termin (4.11) as

¢ T .,
54/ Fela(e®7), a(e’T), ¥s(T)) dT 262/ Fola(r), a(r),e™ Faps(0)) dr
0 0
T
42 /0 Fula(r), a(r), Wi(re~2) dr = I(T) + L(T) .
Now for the first term

T 2
1L < O - ( sup la@) - [~ e dr = 0@")

T€[0,

Hence,HhHLp(Loo) < Cet",
In order to bound the second term, let us define the linear operator

Bu(1): X = N by B.(r)u= Fea(r),a(r),u) . (4.12)
With this notation
T T
L) 2e / B (1) / e L Pp.Q AW (r) dr
0 0

Let us first consider the case whepeand P, commute. In this case, the process
B,(+) is independent of the proceg3@QW(-) and one can decomposgg in the
following way:

law T To L -2
L. / Bo(P)e =D PO dr dW (1)
0 T
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e / " B / L L PO AW () dr = Ty(T) — Iu(T) .
T 0

Sincel; is a martingale, the Burkholder—Davis—Gundy inequality E&sgesection
IV.4 of [RY99]) yields

To p/2
E( su ITPgCE/ B)||20dr) ", 4.13
(TE[D%]II sDIP) < GE( [ 1B dr) (4.13)
where we defined the proceBse C°([0, To], L(X, N)) by
~ To —2
B(r)=¢ / B,(n)e k= -Dp.Qdr .

Moreover, we denote by.J the space of Hilbert-Schmidt operators with norm
|B||2, = tr(BB*), where as usuab* denotes the adjoint operator Bf
2

By Assumption 3.1||e~ L= *=T) p,|| < Ce=w= *("=T) and therefore

sup [|B(r)lzg < C®- sup [Ba(r)]leeeny
Te[0,To] r€[0,70]
where we used that tHB*) < C||B|| z(x.xy due to the fact thaBB* € LN, N)
is just a matrix.
Combining this with Lemma 4.3, (4.12) and (4.13), we eventually get

E( sup |13(T)\p)gcps3p. (4.14)
T€[0,To]

In order to bound 4, we write it as
o [T0 Le=2(r—T 2
I(T) =« / Bo(P)e =D P, (e 2r) dr .
T

Since|| PsWp || g~y < Ce™" (see the proof of Lemma 4.3), it follows immedi-
ately from Assumption 3.1 thdl, is O(¢*~). This finishes the proof of the lemma
for this case.

It remains to bound, in the case whef andP. do not commute. SincB,(7)
is a semimartingale with respect f0.Q W (r), we defineF, as the orthogonal
projection on the cokernel d?.(Q, which is the orthogonal complement of ke
in X. This projector is of rank at most = dim and is such thaBB, (') is
independent of the-field generated by the increments@€1 — P,)W (-). We can
therefore apply the previous calculation to this part and it remains to bound

o(T) = / B.(7) / LN P QP AW () dr |
0 0

SinceB, is a bilinear map applied ta:(a) and P, has finite rank, we can rewrite
I; as

I(T) = =B /O L) @ a(n) @ ( /0 T M) g dw(r))dr,  (4.15)



PROOF OF THEAPPROXIMATION RESULT 18

whereM is now a matrixw is a Wiener process of finite dimension, sayand3
is a finite-dimensional linear map. Moreover, we idenfifywith R™. We use this
notation in order to avoid using multiple indices.

SinceB is constant and of bounded norm, we make a slight abuse of notation
and omit it in the sequel. It is possible to choasén such a way that satisfies
the equation

da(r) = (Aca(r) + Fola(r))) dr + Q dw(7) = G(a)dr + Q dw(r), (4.16)

for some matrix) € R"*™. In particular, the processis adapted to the filtration
generated byw. In order to simplify the subsequent expressions further, we write
S for e=M="* and we define the process

T
was(T) = /0 SO @ dw(s), (4.17)

which is easily seen to be of ordéc!~). This is for example done by rescaling
to the fast time-scale, and using the analog for the boun#8,®¥i (¢).

In order to bound (4.15), we would like to exchange the order of integration.
The problem is that the integrand for the stochastic integral is then no longer
adapted. We will therefore interpret all the stochastic integrals appearing until
the end of this proof as Skorokhod integrals (see [Nua95] for example). We will
mainly make use of the following property of the Skorokhod integral, wtgre
denotes the Malliavin derivative of a random variable. We formulate only the one-
dimensional version, the finite-dimensional generalisation being obvious.

Lemma 4.8 Let 3 be a Brownian motiony a Skorokhod integrable process, and
let « be a random variable with square integrable Malliavin derivative. Then

T T T
0 / u(t) dB(t) = / a u(t) dB(t) + / Drault) dt (4.18)
0 0 0
holds.
Proof. The proof of this lemma can be found in [Nua95, p. 40]. O

For shortness of presentation, we do not give a detailed definition of Malliavin
derivatives. The only Malliavin derivative required in this paper is that of the pro-
cessa, which is denoted by;a(7). Sincea takes values it” andw takes values

in R™, Z,a(7) will take values irR™ @ A/, which we also identify withC(R", NV).

With this identification madeZ;a(r)v is given, for eachy € R™, as the solution

to the random differential equation

dDa(T)v
dr

(If t > 7, thenZ;a(r) = 0.) Formally, (4.19) is obtained by making the substitu-
tion dw(r) — dw + hd(r — t)dr in (4.16) and then differentiating the resulting

= DG(a(7)) Zra(T)v, Dralt)v = Qu . (4.19)
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process with respect th and evaluating it ab = 0. For a general and rigorous
definition of the Malliavin derivative, we refer to [Mal97, Nua95].

Obviously DG(a)v = A.v + 3F.(a, a,v). Hence, using the bound ot and
condition (3.4), we derive using a standard Gronwall argument, that one has for
t < 7 the bound

1Zea(m)l| < [Qel A1), (4.20)

where all norms are the corresponding matrix noengsin R" .
Another ingredient for bounding, is the following modification of the Burkholder—
Davis—Gundy inequality:

Lemma 4.9 Letw(t) andSt(E) be as above, and léf(s) be a real-valued continu-
ous adapted process whdsenorm has moments of all orders. Then, the following
bound holds for every > 0 and for everyp > 1:

E sup H/t 2(s) 89, ® dw(s)Hp < C,E (/T 1Z(5)2 ds)p/2 . (4.21)
te[0,77" /0 0

where the constan, > 0 is independent of.

Proof. Using integration by parts, we get
t t
/ 2(5) 8@ du(s) = Id ® / 7(s) duw(s)
0 0
t s
+ 5_2M/ St(i)s ®/ Z(r)dw(r)ds .
0 0

It now suffices to apply Burkholder—Davis—Gundyjﬁ)Z(s) dw(s) and to use the
fact thatSt(a) is a contraction semigroupe. a bound like (3.1) holds. Hence

t t
/ 189 || ds < M / e~ =) gs < Ce? (4.22)
0 0

and the estimate (4.21) follows. 0

Let us now finally turn to the bound of(7"). Using (4.18) and the stochastic
Fubini theorem (see.g.[Le693] for a quite general version that also applies to
Hilbert spaces) we can rewrite it as

~ T rr
o(T) = ¢ /0 /0 la(r) @ a(r) — a(s) @ a(s)] ® S€, @ du(s) dr (4.23a)
T T
te / a(s) @ a(s) @ / S _dr @ du(s) (4.23b)
0 s
T T
+ 26/0 /0 a(T) ® Dsa(T) ® 57(.628 dsdr . (4.23c)

Term (4.23c) is seen to be of orderby using (4.20) and Lemma 4.3. Term (4.23b)
can be bounded by first computing the inner integral explicitly, which gives an
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additionals? from integratings(a), and then applying Lemma 4.9 to the remaining
terms. So it remains to bound the first term (4.23a). Bisiformula, we have for
some constant matrik', which depends only on the covariance magixthat

a(t) ® a(r) — a(s) @ a(s) = 2 /T a(r) ® G(a(r)) dr
+(r — 8)C+2/7a(7")®6~2dw(r) )

The term induced byr(— s)C can easily be bounded &9(c?), using (4.22). So
we focus on the two remaining terms which we denote/byand.J,. For the first
one, we get, by applying again the stochastic Fubini theorem and (4.18):

JW(T) = 2¢ /O ' /0 ' / " a(r) ® G(a(r) dr © 89, @ du(s) dr
9 /0 ' /0 " a(r) © G(a(r) © SO wp () dr dr
+¢ /OT /OT /OT Dsa(r) @ G(a(r)) ® Sf_)sds drdr
te /0 ! /U i /0 " a(r) ® DG(a(r)) Zsa(r)  S© ds dr dr .
All these terms are easily bounded ©¥=?), using Lemma 4.3 fo#, Assumptions
3.2 and 3.3 fog, (4.22) for producing?, and the discussion after (4.17) showing

thatwy, = O(e').
The termJs is defined as

To(T) = 2¢ /O ! /0 ’ / " a(r) ® O du(r) © SO, @ dw(s) dr .

Changing the order of the integration and computing explicitly the integraldver
yields

Jo(T) = 263 /0 ! /O a(r) @ M9 (89— 1d) ® du(s) ® O du(r) .

At this point, we again use (4.18) in order to “puli’out of the inner integral. This
yields

T ~
To(T) = 2 / a(r) © M(SE . — Id)wy(r) ® O dw(r)
0
4268 /T / PDsa(r) © M~189) ds (89, — 1d) © O du(r) .
0 0

Both terms are at most of ordél(c3) by Lemma 4.9 and the fact that Z;a, S(E),
wyy are all of orderl or better, therefore concluding the proof of Lemma 4.7
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4.3 Approximation

In this subsection, we use the bounds previously obtained for the residual to give
the proofs of Theorem 3.8 and Corollary 3.9. Recall that this theorem states that
(t) does indeed approximatet) up to errors of orde®(e3~), wherew is a
solution of the original SPDE (3.7) with initial conditions satisfying ta@riori
bounds (3.8).

Proof of Theorem 3.8For shorthand notation, we defidgt) by u(t) = ey.(t) +
e295(t) + €2 R(t). Note that by definition (cf. (3.11)) we hav0) = 0.
Define for some arbitrary < (0, i) andT; > 0 the event4 by

A={ sup (@ + [ve®l +=*|Res@®)]
1[0, Toe 2] (4.24)

+e?Res(WMII) <=7} .

We know by Lemmas 4.3, 4.6, and 4.7 tiRfid) > 1 — C'<P. Now all we have to
verify is that that sup.(o 1, .-2; [ R(?)[| < Ce™" on A.
Let R. = P.R, R; = P;R and define the stopping time by

Te =inf{t >0 : ||R@t)|| > /?} .

One obtains from (3.7) and (4.6)

R(t) = e ®Res()(t)) + &2 /0 t e ILAR(T) dr
(4.25)

+e7? /0 LI (Fu(r) — F) dr

SinceF is trilinear andu = 1) + 3R, we have by Assumption 3.3

1F () = F@)llx-o < Cre®@lle™ IRl + 3% [le Il BII* + | RII) -
Fort < 7., we thus obtain o

[Rs(@)] < Cres ™"+ C / ts(l + (t- — 1)~ e TD(Ca?? + CpCe)) dr

< Ce™ ™. ’

Since, by Lemma 4.7, Rg®(t)) is differentiable, we get from (4.25)

OiRc = ?AcRe + RS (Y1) + Fe(oe + s + €7 R) — Felte + £1)s) -
In order to boundrR., we define as in (4.12)~thé(/\/, N)-valued proces3, (1)
by B,(T)v = 3F.(a(T),a(T),v), and we selR.(T) = R.(c*T), whereR, lives
on the slow time-scale. With these notations we get

OrR(T) = (Ac + Bo(T))R(T) + e 0r(Res(y(e*T))) + K(T), (4.26)
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where we defined
E2K(T) = Fo(the + eths + €2R) — Folthe + €ts) — 3Fo(the, e, €2 Ry).

Now an elementary calculation shows tliatcontains all terms fronfF (u) that are
of higher order. Hence, we obtain ohthat

|K(T)| < Cr,e*/?>72% for T €[0,Tp] N[0, 72 (4.27)

To boundR, or R, we will discuss (4.26) further. First defii&T, S) € LN, N)
as the flow generated by, + B, (1), i.e.the solution of

OrU(T, S) = (Ae + Bo(T))U(T, Sy,  U(S,S)=1.

To boundU note first that obviouslyd, € L(N,N) and (w, Bo(T)w) < 0
by (3.4). Hence(w, (4. + Ba(D)w) < [|Acllconllul? for all w € M. Us-
ing a standard Gronwall argument, this immediately implj€XT’, S)||zv) <
exp(||Acll (T — S)). Moreover, solving (4.26) with the help of the variation of
constants formula yields

. T T
R(T)=¢73 / U(T, S)0s(Res(i(e2S))) dS + / U(T, S)K(S)dS .

’ ’ (4.28)
By (4.27) the second term on the right-hand side in (4.28) is bounded by

[ /0 Lo, K (s) as|| < O < O (4.29)

In order to bound the first term in (4.28), we integrate by parts:
T
| U995 (Res(w(e29) dS = Res(v(e*T) ~ U(T. ORes (w(0)

+ /0 ! U(T, S)(A. + Bo(S))Res(v(e25)) dS .

Combining Lemma 4.7 with our bounds fdr, B,, andU, we bound the latter by
Cpe™",

We have shown thatR(t)|| < Ce=* for t < min{r.,e~2T;}. By the continu-
ity of the procesd| R(t)|| and the definition of, this implies that, > =27, on
A for e > 0 sufficiently small, so the proof of Theorem 3.8 is complete. O

Proof of Corollary 3.9.Recall the notatior - || z»(z.~) introduced in (4.7). Using
(3.8) and Lemma 4.3 we readily obtain the followiagriori bound.

IRl ooy < €2 ullcoeey + €21l ooy < Ce™2.

DefineR;, = sup¢jo,n,—2) | R(#)[|P. Using Theorem 3.8 witlip + 4 instead ofp,
we easily derive

ER, = / RydP + Ce¥* / dP
{Rp=Cedr—r} {Rp<Ce3r—r}
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< P(R, > C*~)1/2 (ERD)? + O

< C€3p+2872 4 C€3pfn ,

which concludes the proof of Corollary 3.9. O

5 Structure of the Invariant Measures

In this section, we consider the approximation to the original equation on the slow
time-scale and we rescale its amplitude by a factdr In other words, we consider
for the approximation the solutions of

dve = Aeve dT + Fo(ve) dT + P.Q dW(T) , (5.1a)
dvs = e 2Lug dT + P,Q dW(T) , (5.1b)

where W is the rescaled Wiener process, with the same distributiof’ asWe
rewrite the original equation (1.1) in a similar way as

dio = e 2Ludl + AadT + F(@)dT + Q dW(T) , (5.2)

wherew(T) = e~ 'u(e~2T) is the rescaled solutiom.

We denote byPr the Markov semigroup generated by the solutions of (5.1) and
by Qr the one generated by (5.2). (We make a slight abuse of notation by using
the same symbol for the semigroup acting on measures and its dual group acting
on functions.) Since (5.1a) and (5.1b) are only coupled through the noise, they
can also be considered separately and we denoRsndP;. the corresponding
semigroups.

Since we rescaled the equations in such a way that solutions are oflorder
and no longer of ordet, it will follow that the Wasserstein distance (5.6) between
the invariant measures f@7 and forPr is of orderO(c?~). A straightforward
modification of the arguments presented here also allows to show that this distance
is of orderO(¢3~) in the original scaling. We however prefer to prove the result
in this scaling for simplicity of presentation, as now a lot of terms are actually
independent of.

The main results are the following. The first result basically saysfhas (up
to small errors) a contraction uniformn Precise definitions and properties of the
Wasserstein|((- ||) and other distances of probability measures will be given after
the theorems.

Theorem 5.1 Let the assumptions of section 3 hold. There exists & 0 such
that

1
IPryp = Proviie < 5lln — vl +62/X(1 + [|Psz]) (i + v)(de) ,

for every pairu, v of probability measures oX and for every € (0, 1).
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The next result gives the expansion of the invariant measure. Important is the
following bound on moments of some measuravhich is necessary to apply the
results of the previous sections.

Let C, be a sequence of positive constants indexeg by 1 and lety be a
measure orX satisfying

/X |z|” u(dz) < C, and /X |Psz|l? ulde) < Cpe?  (5.3)
forallp > 1.

Theorem 5.2 Suppose all assumptions of section 3 are satisfiedulaetd v be
two measures oX satisfying (5.3). Then, there exist constafits’,, andy > 0
depending only on the fami§C,} such that

IPru— QrvliL < Celp— vl + Cue®™" (5.4)

holds for everyl” > 0 and every= € (0,1). In particular, if u, and v, denote
invariant measures foPr and Qr, respectively, one hdgs, — v, ||L < Cie? ™",

It is clear that, in the case whefg and L. commute, we have independence of the
solutions of (5.1a) and (5.1b). Hence,

P = 1S ® 115 (5-5)

wheren$ is the invariant measure for (5.1a) apg is the invariant measure for
(5.1b). Due to the structure of the equation, it is furthermore obvious that one
always has’; i1, = p$ and P}, = pf. However, there is in general no reason for
(5.5) to hold if P. and L do not commute.

In subsection 5.2, we show that, everPifand L do not commutghe equality
(5.5) holds up to an error term of ordet—* for arbitrarily smallx. This is a
consequence of the fact that (5.1a) and (5.1b) live on different time-scales. It is
nevertheless rather surprising that the error is roughly of ordesince (5.1b)
needs a time of the ordef to reach equilibrium, but in this time interval (5.1a)
moves by an amount of ordet due to the presence of the diffusion term. The
rigorous statement of this result is:

Theorem 5.3 Let the assumptions of section 3 hold. Then, for exery 0, there
exists a constant’ such that

s — p§ @ L < Ce*"

forall € € (0, 1), wherey, is the invariant measure for the approximating equation
(5.1). MoreoverP* u, = u$ and P, = pi are the marginals ofi, on A andS.

Before we proceed, we first recall definitions and properties of the norms on the
space of signed measures &n which are used in the statement above, and the
proofs below.
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Given a measurable functign: X — R, we define its Lipschitz normie||_

by
el = sup {0 W‘“D(y)’}

zyeX I =y

We will also be led to consider function with bounded Lipschitz norm in the stable
directions. We therefore define in a similar way

l() — o(y)| } .

llLs = sup {w(x) :
Il A P = Pl

z,y€X | Pex=Pcy

These two norms induce corresponding norms on the space of signed measures on
X. The Wasserstein distance is defined by

== sup |[ e~ [ ¢@ (5.6)

lellL<1

and we defing|p — v s in a similar way. Recall also that the total variation
distance between two measuresXns given by

In=vivv = sup | [ c@yutan) - [ o@yvaa)].
llsell oo

where||¢||« = sup,cx |¢(z)|. Note that these definitions imply

I =vle < flp = vlles <l =virv-

We will sometimes use the following equivalent definition of the total variation
distance. Denote b¥(u, ) the set of all couplings of. andv, i.e. the set of all
probability measureB on the product spac& x Xsuch that the first marginal of

P is equal ton and its second marginal is equalitoThen, one has

1 .
Ly — = inf P .
sllw— vl ol {z #y}
Furthermore, there exists one coupling that realises the infimum.
The Monge—Kantorovitch theorem (seq.[RR00]) yields a similar represen-
tation for the Wasserstein distance:

Su—vie = ot [ [ inf{le—yl 1} PErdy) . E)

PeL (1) J X

In particular, an inequality holds if the integrand on the right hand side is taken to
be ||z -yl
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5.1 Proofs

We now proceed to the proofs of Theorem 5.1 and Theorem 5.2, which will be
broken into several steps. First, we show the following “smoothing property” of
Pr.

Lemma 5.4 There exists a constaff independent of such that, for ever§” > 0,
one has X
1Prp—Prv|Ls < KT 2+ 1)|lp— v,

for every pairu, v of probability measures oX .

Proof. Since we assumed th&.() has maximal rank, we can rewrite (5.1) using
the projectionP, that was defined in the proof of Lemma 4.7. We obtain:

dve = Av. dT 4+ Fe(ve) dT + Q. dw(T) ,
dvs = e 2Log dT + Qs dw(T) + Qsdwoo(T) ,

wherew is a standarch-dimensional Wiener process obtained fréthby w =
P,WW, ws is an independent cylindrical Wiener processiin and the various
covariance operators are given by

Qc:PcQP1 Qs:PsQPv Qs:PsQ(l_Pq)'

The operator(). can be identified with an invertible x n matrix by Assump-
tion 3.7.
The proof of Lemma 5.4 follows easily from the definition of the norms, if we
verify that for all measurable with ||¢[|L s < 1 we havel|Pry||L < C(T~/2+1)
for some universal constaat > 0. In the following we fixep.
First, we establish a uniform bound on th&€&et derivativeD . Pro. Denote
by ®” the stochastic flow generated by (58, &7 (v.(0), v5(0)) = (ve(T), vs(T))
for a solution of (5.8). Le®? and®! be its components i§ and.\, respectively
and denote by, and D, the Fchet derivatives along the subspaSesnd/\.
Then, a trivial modification of the Bismut—Elworthy—Li formula [EL94, Thm.
2.1] yields

(5.8)

D,P h= g o7 ! “1(D.®%)(vo)h, dw(S
(DePro)enh = 1E((p 0 #T)(w) [ Q21 (D) wolh, du(s))) |

with vy = (v.(0), v5(0)) for short. Thus

c (T _
[(DPre)w)? < 75 [ EIDAHE0)*ds < CT " +1).
where we used the uniform boufldD.®7)(z)|| < ell4<I”, that can be obtained
as in (4.20).

The contraction property of“* implies ||(D®1)(vo)|| < 1 for all vy € X.
Since||¢llLs < 1 by assumption, it is straightforward to verify that this implies

that ||Pre||Ls < C. Together with the estimate ai.Pry obtained above, this
concludes the proof of Lemma 5.4. O
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It follows immediately from the definitions thd?} . — Prv||tv < [[n—v||Ls,
whereP} 11 is the marginal of: on P.X . Therefore, the previous lemma says that
if two measures are close in the Wasserstein disténfe, then their marginals on
N will be close in the total variation distance after a short time interval. The next
lemma says that they will get even closer as time goes by.

Lemma 5.5 There exists a constart< 1 such that
|Piu—Pivirv < &llp—vtv
for every pairu, v of probability measures a.

Proof. Denote byPf(x, - ) the transition probabilities for (5.1a) and By. the ball
of radiusr centred around the origin. Using Lemma 4.5 we immediately get

Pr(z, By) > 1 - C(p, T)/1", (5.9)

where the constant depends onlyandT, i.e.the estimate is uniform im.
On the other hand, the following Lemma is well-known [MT94]:

Lemma 5.6 Let P;(x, ) a Markov family of transition probabilities on a locally
compact state spack which is strong Feller and short-time irreducible. Then, for
every compact set’ € X and everyt > 0, there exists @ > 0 and a probability
measures on X such thatP;(x, -) > v for everyx € K.

Since the noise acts in a non-degenerate way/dsy Assumption 3.7 it is easy to
check that the family?f(z, -) satisfies the assumptions of Lemma 5.6. Combining
this with the estimate (5.9) concludes the proof of Lemma 5.5. O

The last ingredient we need for the proof of Theorem 5.1 is some control on what
happens on the stable spageThis is given by

Lemma 5.7 The estimate
[Pra = Proll < 12— Pevi + M= ™7 [ 1Pl G-+ v)(da)
holds for every paii, v of probability measures ox .

Proof. Let v™(0) andv®(0) be X -valued random variables with distributiops
andv, respectively, and denote b{!)(T") andv®(T') the corresponding solutions
to (5.1). With this notation, we can writéP,u — Prv||. as

|Pri—Prv|lL = sup |[Ep(v™(T)) — Ep(v@(T))]
lellL<1

< sup E[p(eM(T)) — p(v@(1))] .
lellL<1

(5.10)
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For ¢ with ||¢||z < 1 rewrite as beforeo(v) asy(v., vs). We derive

o (D(T)) — p(v(D))] < (D), vUT)) — L((T), vVEUT))]

+ (D), v(T)) — @ (wENT), vP(T)))
< Me= " [o(0) — v2(0)|

+ (D), vP(T)) — (WP (T), V(D)) ,

where we used (3.1). By the definition of the total variation distance, it is possible
to find a coupling between™®(0) andv®(0) such thatP{v(D(0) # v (0)} =
| P — Prv|lrv, and therefore alsB{v{)(T) # vP(T)} = 3| Pip — Prvlrv.
The claim follows immediately. O

We can now turn to the

Proof of Theorem 5.1Using the fact thak || P; Wi (t)|| < C for anyt > 0 and the
contraction property (3.1), we immediately obtain that there exists a constant
such that

[ IRal(Priz) < €1 [ (4 Py )
X X

for all ¢ > 0 and all probability measurgs. One can then find a constant> 1
independent of € (0, 1] such that

20 Me = T < &2, (5.11)

Furthermore, since < 1, one can find an intege¥ > 1 such thakKx™ 1 < 1,
whereK is the constant from Lemma 5.4. Choosifig= N + 7 and combining
the three previous lemmas, we obtain

[Prop — Pryvlle < [[PEPyp— PEPvlrv + 221 /X | Psx|| Py (p + v)(da)
< KNP P = Bl +22 [ (14 [Pl (u+ v)(de)
<2 u— vl +e? [ (14 [ Pal) G+ v)(d)

where we also used that obviousi Pr = PrPr. O

Remark 5.8 It is clear from (5.11) that a far better asymptotic for the rest term
could be achieved, but it is sufficient to establish a bound of arélesince our
other error terms will only be of that order.

The remainder of this section is devoted to combining the contraction result from
Theorem 5.1 with the results of the previous section in order to obtain information
on the invariant measure for (1.1) (or equivalently on the invariant measure for the
Markov semigroup@r). We first reformulate these results in the context of this
section.
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Lemma 5.9 Letu be a measure oX satisfying the bounds on the moments given
by (5.3). Then, there exists a family of constati} depending o{C),} but not
one or yu, such that

J el Prajn) < € [ IPall? (Prida) < Cje
J el (@rn) < ¢ [ 1Pl (Qrida) < Cer
for everyp > 1 and everyl” > 0.

Proof. One part of the proof is just a rescaled version of Theorem 4.1, and the part
for Pr is given is Lemma 4.5, where we just have to rescale in one case. [

Lemma 5.10 Let ;1 be a measure otX satisfying (5.3). Then, for evef§y > 0,
there exists a constardt, depending orfy and on the family of constan{s”, },
such that for alll” € [0, Tp]

[Pruw— QrulL < Coe®",
holds for every € (0, 1) and everyl’ < Ty.
Proof. This is just a restatement of Corollary 3.9. O

We are now ready to turn to the

Proof of Theorem 5.2We fix once and for all the valu&, > 0 given by Theo-

rem 5.1 and we choose two measureandv satisfying (5.3). Combining Theo-
rem 5.1 with Lemmas 5.9 and 5.10 obtained above, we get for an arbitrary integer
n:

N

1P — Qi < 1Pry(PR i — Q5 ')l + (P, — O1) Q% vl

1 — — _
5”73%) 1N - QSL“() 1V”L + C'b?’f2 + Ca52 ~

IN

Iterating this estimate, one readily obtains by Lemma 5.4 that, forrany0, Ty]

1 _
HpnTo-l—Tﬂ - QnTo-i-TVHL < FHPT—&-T()M - QT"!‘TOVHL + 2bef2 + 20&52 "

1
2n—1

< —— KTy P+ D)|p— v+ Cee® ",

with C, = 2(C, + C}). Choosingy = "3_,,%2 (5.4) follows easily. O
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5.2 The non-diagonal case
This section is dedicated to the

Proof of Theorem 5.3Denote byPr(u,-) the transition probabilities for (5.1).
The idea of the proof is to use the fact that, on small time-scales, the drift term
for (5.1a) is not important and therefofe-(u, - ) is close to a Gaussian measure
with meanes *L7y, and with covariance operator

~ T -2 —27 %
CT:/ I QR T gy (5.12)
0

whereL* denotes the adjoint af in X. Denote byPr(u, - ) the Gaussian measure
on X with meanP.u and covariance operat6fr. We then have

Lemma 5.11 Fix an arbitrary s > 0 and fixT. = ¢2~%. Then, there exists a
constantC' > 0 independent of such that the measuyer, defined by

pr() = /N Pr(u, -) p(du) = /X Pr(u,-) () | (5.13)

satisfies|ur. — psllL < Ce?".

Proof. As p.(-) = [x Pr(u,-) p(du), it suffices to show that
[ 1P, = Pr(u )l (e < €2
We first show that there exists a constaht- 0 such that, for alll”’ > 0, we have

/X 1Pru, ) — Pru, )|l jusldu) < CT (5.14)

with Pr(u, - ) the Gaussian measure of medn Ty and covarianc€'y given by
(5.12).

Let (v, vs) be a stationary solution of the approximating equations (5.1) with
initial condition v. ThenPr(v,-) is given by the law of this solution. Since
Pr(v,-) corresponds to the dynamics without drift /W, we can choose the pro-
cess (.(0)+ P.QW , v,) to realisePr(v, - ). Now one has by the definition of ||
the bound

A T b
[ 1Prw.) = Pr( ) paldn) < E [ 00+ ool de
X 0

where we used (5.1a) and straightforward estimates. Since the invariant measure
14 has all moments bounded of ord8(1) by the rescaled version of Lemma 4.1,
the bound (5.14) follows.

Furthermore, we immediately get the bound

1Pru,-) = Pr(u, - )|lL < € T P < e~ T || Pyu
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as the Gaussian measuf@s(u, - ) andPr(u, - ) differ only by the termes™“27 P,y
in the mean.

Using both parts of the proof and again #neriori bounds on the moments of
1%, Lemma 5.11 follows at once. O

Using Lemma 5.11, Theorem 5.3 will follow, if we can show that
ez, — pg @ il < Ce*° (5.15)

holds forT. = £2=*. Let us writePs. for the marginal ofPr(u, - ) ontoS = P X.
(Note that this projection is independent.0j Recall that the covariance &% is

e 2

G = &2 / L PO PuciT dr | (5.16)
0
whereas the covariance pf is
~ oo *
C; = 62/ els" P,Q* Pyesm dr .
0

Since the integrand is positive definite, it is obvious that— C“% is positive defi-
nite. One can thus write a random variable with lajvas the sum of one random
variable with lawP3 and an independent centred Gaussian random variable with
covariancel’ — C’;‘;. The representation (5.7) then immediately yields the bound

1P5 — sllL < \/tr(Cs — G5,

which in turn is bounded b@ge*ngT from (3.6). ForT' = T this expression is
smaller thare?, so it suffices to show

lpr, — pS @ P L < Ce*77 . (5.17)

Until the end of this proof, we will denote elements\éfby = and elements af by

y, X = N &S (cf. Assumption 3.1). We will also denote the measBi€0, - ) by
Pr(dz, dy). Since (5.1a) is a finite-dimensional non-degenerate SDE with smooth
coefficients, its invariant measuré has a smooth density(x). Furthermore, as
shown in Theorem A.1 of the appendixactually belongs to the Schwartz space.
In particular, we use € W1(N), i.e. there exists a constaaj such that

/ |Vo(z)| dx < ¢, , / |V20(z)| dz < Co» (5.18)
N N
whereV denotes the gradient and? the Hessian.

In order to obtain the required estimate, we fix a test fungtionX — R with
lle|lL < 1and, using Taylor series, we write

/wmmmmwb//wmwm—mm%mww
X X JN
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- /X /N oz, )o@) dz Pr(d’, dy')
- /X /N oy, Vo) de Pr(de’, dy)

. "1 ~
+ /X /J\/’/o e,y )a', V2(x — ra)a’) dr dePr(da’, dy')
=: I1(p) + La(p) + I3(p) -

By definition, [, Pr(da’, -) = P3, hence
n@) = [ [ e uinpidn = [ [ o) us o Pitds.dy).
SN sIn
and therefore,

lpr — e @ Pl = SUILO{\Iz(sD) + I3(9)|} -
=

Using (5.18) /¢ (x, y)| < 1, and the definition oPr, itis straightforward to bound
I5(p) by the second moment d@?Pr. Since this is a centred Gaussian with co-
variance matrix®.C%P. = T - P.Q*P,,

I3(p) < Co tr(PcQQPc)T ,

which in turn is smaller tha's?>—* for T = T..
Definey(y) = [\ o(x,y)Vo(z) dz. If |[¢f|L < 1, the functiony is obviously
Lipschitz continuous with constant smaller thginand we have fof> ()

1) = | | W) 2) Pride.dy)| = | [ () = 0@),2) Pr(de, dy)

< ¢, /X ]| - [[yl|Pr(da, dy) < cp\/t(CHIT H(P.Q2P,)

where the last step uses Cauchy—Schwarz inequality and (5.12). Using (5.16) and
(3.6), we verify| I (p)| < Cev/T, and the proof of (5.17) and hence Theorem 5.3
is complete. O

6 Total Variation Bounds

So far, most estimates obtained in this paper were formulated using the Wasserstein
distance between measures. This distance is strongly linked to the topology of the
underlying space. For example, the Wasserstein distance between Dirac measures
located at two points andy is given by two times the distance betweeandy,

as long as this distance does not excée®n the other hand, the total variation
distance between two such Dirac measures is alMaysilessr = y. Also, if

one scales the distance of the underlying space by a factihre corresponding
Wasserstein distance between two given measures will also scale (approximately
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for small distances) by, whereas the total variation distance between the two
measures will always remain the same.

However, if we takeg: to be the centred Gaussian measur&avith covariance
1 andv to be its translate by a distanegone hag|u—v||tv = Ce and||u—v||L ~
Ce for e small. One might thus expect that the total variation distance between two
measureg andv is in general comparable to their Wasserstein distance, as long as
u andy are scaled in such a way that they are localised in a region of about unity
size and have smooth densities with derivatives of roughly order one. This is in
general not true, as shown by the following example:

wu(dxr) = e da | v(dr) = (e_x2 + xe_(x/5)2) dx . (6.1)

In this case, a straightforward computation, using that the total variation distance
is the L!-distance for densities, shows that one fpas- v||tv = 2. On the other
hand it is easy to verify that=® < ||u — v||L < &3 for some constant € (0, 1).
Actually, one can show that if bottaandr have smooth densities with integrable
first and second derivatives of order one, one has an estimate of the type

2/3
= vl < Cllp — v .

To prove this, it suffices indeed to boufid — v||tv by
[ =viirv < llp—pxGilltv + [l x Ge —vx Gillv + lv —vx Gillrv

whereG; is the Gaussian measure with covariancesing the smoothness of the
densities, the first and the last term are bounde@thyrhe middle term is bounded
by C||u—v/||L/+/, using a computation very similar to the one that yields the bound
(6.11) below. The claim follows by optimising The above example (6.1) shows
furthermore that this estimate is sharp.

These considerations show that, by combining the results of section 5 with
smoothness properties of the measures, one may expect to obtain bounds of the

type

4/3 2/3

1PZ e — Pevilrv = Ce [px = villrv = Ce

Here, we again denote hy, the invariant measure for (5.1) and bythe invariant
measure for (5.2). Our aim in this section is to show that one can even get slightly
better estimates than that, namely we will show in Theorems 6.1 and 6.9 that, for
x arbitrarily small, one has

1P e = Pivillry < C¥27% | — v < Ce'7

These estimates will however require us to put rather strict lower bounds on the
covariance of the noise, as stated in Assumption 6.3 below. The main reason why,
in the total variation distance, we do not achieve an accuraey iof A/ is that, in

our formal derivation of (5.1), we approximateg(7T=~2) by a white noise process

with intensitye. This approximation is justified in the weak topology, but not in
the total variation topology where the distinction on a “microscopic” level (the
regularity properties of both processes are of course completely different) becomes
apparent.
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6.1 Total variation distance in A/
In this subsection, we show the following result:

Theorem 6.1 Suppose all assumptions of section 3 are satisfied, and lehd v,
denote invariant measures for (5.1) and (5.2), respectively. Then for every,
there exists a constaut such that

1PZ 1 = Pivilly < C¥277
holds for every: small enough.

The following lemma is an extension of Girsanov’s theorem and will be useful
for the proofs.

Lemma 6.2 Let v denote the Wiener measure on the intefjall’] and leth be
an adapted process satisfyihg, = €ss SUpcq SUR¢[o, 17 [7(t, w)| < oo.
Let u be the measure associated to the Girsanov transformation

w»—>u~;=w—|—/.h(s,w)ds.
0

(i.e. w is again a Wiener process undgr) There exists a universal constaft
such that one has the bound

|l —v]Tv < Choo\/T.

This lemma is only formulated and provedR) but it is easy to see that it holds
for any Hilbert space valued Wiener process, provided we use the norm of the
corresponding Cameron—Martin space in the definitioh.of

Proof. By Girsanov’s theoremy and v are mutually absolutely continuous and
one has

T 1 (T
Dlw) = P (w) = exp(/ h(s, w) dw(s) — f/ (s w)? ds) .
dv 0 2 Jo
The total variation distance is then bounded by

= vl = ([ 11 = D@ vidw)” < [ = D) widw)
= /DQ(w)y(dw) —-1< ehsT ,
where we used in the last step, that £kp 2h(s)dw(s) — & [ |2h(s)|?ds} is a

martingale. Since on the other hand one has by definijtion v||%, < 4, one gets
|l — v||3, < Ch2.T, which concludes the proof of the lemma. i

We now turn to the
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Proof of Theorem 6.1Let us denote as previously B the semigroup generated
by (5.1) and byQ the semigroup generated by the rescaled SPDE (5.2). We start
by showing that, for every. > 0 there exists a constaiit such that, for every
T €(0,1),
| PPy — P Qrpullty < Ce'™"VT + Ce? (6.2)

holds for every measunewith the property that

/X luel? u(du) < G, and /X s |? pu(du) < Cpe? 6.3)

for everye € (0,1). (The constant” does of course depend on the family of
constants”),.)

We fix a smooth non-decreasing cut-off functign: R, — [0, 1] with the
properties thai(z) = 0if x < 1, x(z) = 1if x > 2, and|Y/(z)| < 2. We then
definex : N'— N by x(z) = x x(||=||). We also defing¢s(z) = dx(z/d). Given
some value) € (0, 1), we denote b;Q‘ST the semigroup generated by the solutions
to the equation

du = e 2Ludl + AudT + F(u)dT + Q dW(T)
- X(S(Acus + fc(u) - fc(uc)) ar' .

Notice that there exists a constart such that, as long asu||(1 + [|u.||?) < C.9,

the dynamics of (6.4) and of the original equation (5.2) coincide. Chposé to

be fixed later. By rescaled versions of Lemma 4.3 and Theorem 3.8, there exists a
constantC' depending o and onx such that

E( sup (Jus(D)(1 + D))
T€[0,1]

[[us (T[]
ep

(6.4)

1
< —E sup (
T€[0,1]

S CEP(1*H/2) ,

+ (1 + (D)%)

where (..(T), us(T)) denotes the solution of (5.2).

If we choose now. = =" andp = 4/k, we get the estimate
2 Ep(l_”/2) 9
P(_sup [lus (D1 + [ucDIP) > Cud. ) < O—5— < C<.
Tef0,1] Oe

Hence (for a suitable coupling between the two driving noise processes), solutions
of (6.4) and of (5.2) coincide fof’ € [0, 1] with probability larger tharl — Ce2.
This in turn yields the total variation estimate

|1P; Q% pu — P Qrulltv < C<?, (6.5)

holding uniformly forT" € (0, 1). On the other hand, we can apply Lemma 6.2 to
estimate the difference betwe&$. andPr by simply taking

Qh = ([ - Xé)(Acus + fc(u) - fc(uc)) .
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(Herel denotes the identity.) Since the norm of the function ys, and thus the
norm ofQh, is bounded by, we can apply the generalised version of Lemma 6.2,
bearing in mind that by using a bounded pseudo-invers@,ofvhich exists by
Assumption 3.7 we can find some procdsshat is uniformly bounded by’é.
Now

1P Pr— P; Qppllrv < COVT . (6.6)

Ford. = ¢!~ the inequalities (6.5) and (6.6) immediately imply (6.2).
We can now estimatgeP> i, — PXv,||tv by

1P b = Pevallry < [Prps — Prvlles + 1P Prvi — B Qrvallty

62_H

VT

where we made use of Lemma 5.4 and Theorem 5.2 to bound the first term and of
(6.2) to bound the second term. Theorem 4.1 ensures that (6.3) is fulfilled. Taking
T = e concludes the proof of Theorem 6.1. O

<C + Ce'™"T + Ce?

6.2 Total variation in X

In order to get bounds offu, — v4||Tv, We have to put additional hypotheses@n
andF.

Assumption 6.3 Let « be as in Assumptions 3.2 and 3.3. There exists a constant
70 > 0 such that, for ally € [0,7], F : (X7)? - X" “andA : X7 — X7—@

are continuous. Furthermore, the operatQr ! is continuous fromX 70— to X

and for somex € [0, 3) we have|(1 — L) ~%Q||nsx) < c.

Remark 6.4 Basically, we need tha® ' F(u(7)) andQ ' Au(T") are bounded in

X for a Girsanov argument. Hence, we need bounds(@i) in X7, which will be
established in Lemma 6.8 by a bootstrapping technique. Moreover, we need further
assumptions on the inverég!. This was not necessary in the previous result for
the centre part, as we could use a pseudo-inverse, which existed by Assumption
3.7.

The main resultof this section (cf. Theorem 6.9) shows that, if the noise is suffi-
ciently “rough”, one has th®tal variationestimate

s = p3 @ pflrv < Cet™ (6.7)

As discussed at the beginning of this section, we are able to approximatdy
up to an error of order in the total variation distance, instead of the error of order
2 that we achieved in the Wasserstein distance.
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6.3 Preliminary estimates

In order to prepare the proof of (6.7), we formulate several technical results. First,
we estimate the speed at which solutions to the linear equation

dvs = e 2Lgvs dT + Q¢ dW (6.8)

converge toward each other in the total variation distance. Here, we consider solu-
tions to (6.8) with values i, we defined@? = P,Q*P, andL, = P,L from
Assumption 3.1. MoreoveyV is a cylindrical Wiener process of such that

QsW = P,QW, with W from Assumption 3.4. We denote % the semigroup
generated by (6.8), which is the same semigroup than the one generated by (5.1b).

Lemma 6.5 Let Assumptions 3.1 and 3.4 be satisfied and assuméthat;° ¢
L(S,S) for somed > 0 (this is ensured, e.g., by Assumption 6.3).

Then, there exists a constafitsuch that, for every” > 2 and for every pair
of probability measureg andv on S with bounded first order moments, one has
the estimate

[Pin =Py < €T [ gt ), (69)
wherew is the constant appearing in (3.1).

Proof. Takey : S — R to be a bounded Borel-measurable function. The Bismut—
Elworthy—Li formula [EL94] yields (after a simple substitution) for theeEnet
derivative of P%, ¢ in the direction:

3/4 ~
(DrP22¢)(vs(0)) = gE(¢(vs(€2)) /1 B (Q7'el0=p, dW(T))) ,  (6.10)

where W(t) = ' W(e?t) is equal in law toWW. By assumption@; 'L ? is
bounded, sdQ; e (-7 < C(1 — 7)7%. Applying Cauchy—Schwarz to (6.10)
yields

3/4
Hwﬁwmws&l¢éﬂrwr%hs&1.

Let us denote by5%(u, -) the transition probabilities corresponding to (6.8). With
this notation, we just proved that

1P2(u, ) = P2(v,)llrv < Ce™Hju — v (6.11)

holds for everyu andv in S. Denote now by, (T, up) the solution at timé&” of
(6.8) with initial conditionu distributed according to the measyre Let vy be
another initial condition independent of and distributed according te. Using
first (6.11) and then (3.1), we derive the bound

1Pii— Pivllry < Ce™ Ellos(T — €2, u) — vs(T — €%, vo)|



TOTAL VARIATION BOUNDS 38

< Ce e "TE|Jug — vo|

< Ol TE(fuoll + [lwoll)
which is nothing but the estimate (6.9). O
We will also need the following elementary property of Gaussian measures.

Lemma 6.6 Letu be a centred Gaussian measure on a Hilbert spice H, ©
H,. Denote by, the marginal ofu on’H, and similarly fors.,. Then, there exists
a p,-measurable linear mapl : 'H, — H, and a centred Gaussian measyg
onH, such that, for every measurabfe H — R, one has

[ t@p ey = [ [+ Ay ncdn) )
H Hy Ha
Furthermore, one has the inequalities

|14yl o) < [l ),

/H ]2 i (der) < /H al1? pa(dr)

Proof. The existence ofl and ofy, is standard. All we need is that the distribution
of a Gaussian, given a marginal, is still a Gaussian, and4bat E,,(z|y) is linear

iny.
The first inequality follows immediately by taking expectations with respect to
y on both sides of the following Cauchy—Schwarz inequality:
IEu(z[9)]” < Eulll*[y) -
To prove the second inequality, observe that
/H (| i (dz) = Ep(lle — Ayl* | y) = En(lz]* |y) — Ayl

and take expectations ovgion both sides of this expression. O

Finally, we show the following estimate on the total variation distance between a
measure with a smooth density and its translates.

Lemma 6.7 Letu be a measure oR™ with a smooth density with respect to the

Lebesgue measure and such tRatis integrable. Letz € R™ and letr, be the
shift map defined by, (x) = « + a. Then, one has the estimate

| = Topllrv <la| [ [Vo(z)|dz,
R"’L

where the absolute values in the right-hand side denote the Euclidean ndrfh on
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Proof. Let f : R® — R be a measurable test function bounded b\We have
[ e+ aew)da— [ @e@ade| =] [ 1@(ow - a) - o)) do
= ‘/ f(a:)/ (Vo(z — at), a) dtdx‘
R™ 0
< [ 1%l Jald
Rn
The claim follows by taking the supremum ovgr O

Another ingredient for our main result will be the following improvement ofdhe
priori estimate from Theorem 4.1, which relies on a bootstrapping technique and
on Assumption 6.3.

Lemma 6.8 Let all assumptions of section 3, as well as Assumption 6.3 be satis-
fied. Moreover, choose an initial conditian such that for any > 0 andp > 0,
one has

Elluoll5, < Ce™ and E[|Psugllf, < CeP™", (6.12)

whereC depends om andp, but not ore.
Then, we have the following bound on the solutioof (5.2) with initial con-
dition uyg:

E sup HU(T)HP <Ce™" and E sup |Pau(T)|, < CeP™",

TG[O, O 6[ ) O]

where the constant depends B «, andp.
Moreover, every invariant measure for (5.2) is admissible,gedistributed
according to an invariant measure fulfils (6.12).

Proof. The proof is straightforward, we just give a brief sketch of the main argu-
ments. Any mild solution of (5.2) fulfils

u(T) = eTL672u0 + /T (T —m)Le™ (Au(r) + F(u(r))) dr + W2 (T) . (6.13)
0

Note thatlV is, as usual, not the origindl” of Assumption 3.4, but a rescaled
version with the same distribution.

First of all, usinge.g.the factorisation method (cf. [DPZ92)), it is well-known
that we can bound the stochastic convolution as follows, using the assumption on
the covariancé) of Assumption 3.4.

E sup [|[W.—,(T)|5, <Ce™™ and E sup ||P,W.—2(D)|F, < CeP™",
T€[0,To] Te[0,To]
(6.14)
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with constants” depending op > 0, Tp > 0 andx > 0. Obviously (6.14) holds
also for anyy € [0, v] instead ofy,. Using this fory = 0, we can easily improve
Theorem 4.1 slightly to obtain

E sup [[u(T)||P < Ce™™ and E sup ||Psu(T)|P < CeP™F, (6.15)
T€[0,To] T€[0,Tp]

with constantg” depending o > 0, Ty > 0, andx > 0.
From (6.13), using Assumption 6.3 to bouddand F together with 3.2, we
easily derive fory € [0,1 — ), v < 70,

[u(D)lly <lluolly + [[We—2r (D)l

T
+C [T+ AT =)™ T ()] + ) [
Hence, using (6.14) and (6.15), we derive

E sup [[u(T)[[5 < E sup ||y +Ce™™ < Ce™™"
T€[0,To] T€[0,To]

The estimate fof| P;u(T)||, is completely analogous using (3.3). The proof for
~v = (in casel — a < ) follows by iterating the previous argument.

Showing that the invariant measure is admissible relies on the same iteration
technique. One starts from Theorem 4.1 and then gets successive bounds by fol-
lowing similar steps as above, removing the supremum and using the bounds ob-
tained from the previous iteration in the right hand side. O

6.4 Proof of the main estimate

Theorem 6.9 Assume all assumptions of section 3 together with Assumption 6.3
hold, and letv, and i, be the invariant measures introduced in Theorem 5.2.
Then, for every > 0, there exists a constanit > 0 such that

[ = 1§ @ pdllry < Cel ™"

Proof. Define Or, Pr, PT, andPr as in section 5.2. Recall that the transition
probabilities Pr(u, -) and Pr(u, -) are Gaussian with meang.u and eZ¢ *Ly,
respectively, and covariangll "¢ “LQ2%¢™ *L" dr. Recall furthermore that ob-

viously PPy = P3..
Similarly to the proof of Theorem 6.1, we start by showing that the estimate

H75T/L — QrplTv < Ce™™2T 4 Ce (6.16)
holds for everyl’ € (0, 1) and for every measure with the property that
/X luell? ) < €, and /X s 2 () < Cpe? (6.17)

for everye € (0,1). (The constanC' does of course depend on the family of
constants’},.)
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To prove (6.16) we can follow the ideas of the proof of Theorem 6.1. First, by
analogy with (6.4), we define the cut-gff: X7~ — X7~ for vy anda as in
Assumption 6.3 by

x(u) = ux(||lullyg-a) » and xs(u) = dx(u/d) .
The semigrou?. is then defined by solving
du = e 2Ludl + (I — xs)(Au+ F(w)) dT + Q dW(T) . (6.18)

Again, there exists a constafit such that, as long /|, (14 ||u[|?,) < C.4, the
solutions of (6.18) and of (5.2) coincide. The estimate (6.16) follows by retracing
step by step the proof of Theorem 6.1, using Lemma 6.8 to get the reguineoti
bounds on|u|,. This ensures thap~!F and@~!' A stay bounded inX, so one
can apply Lemma 6.2. This finishes the proof of (6.16).

Notice furthermore that an immediate consequence of Lemma 6.5 is that

[Pru,-) — Pr(u, - )|lrv < Cete = *T|| P, (6.19)
and thus fofT, = 2"

e — Propllltv < 1Qrvs — Prvsltv + ||Prve — Provditv
+ [|Pr.vy — Pr.pgllrv < Ce,

where, we used (6.16) to bound the first term, (6.19) to bound the second term, and
Theorem 6.1 to bound the last term.
In order to conclude the proof of Theorem 6.9 it remains to show that

|Prpl — ps @yl < Cet ™"

Hence, for every Borel measurable test functionX — R bounded byl ,we have
to verify the estimate

[ o) Pt do s — [ [ ol us) i) ptaus)| < €1
N X N s
(6.20)

Here and until the end of the proof, we flx = ¢2~*. . 3

We now apply Lemma 6.6 to the centred Gaussian meagfe) = Pr(0, -)
with H, = M andH, = S. We denote its marginal o by P;Pr(-), we denote
by Ay : S — N the correspondin@; Pr-measurable linear map, and B.(-)
the measure o/ associated to it. With these notations, we have

/N /X o(0) Pr (e, dv) u (duc)
_ /N /5 /N P(ve + A7vs + e, v5) PR(dve) PrPr(dvs) pS(due)

= C’S: Uidc’]SOdCPS*’]SdS_
/S/N/Nso(u V) T e 1i(duue) P(dve) PrPr(dus)
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From the proof of Theorem 5.3, we know th&t has a density with respect to the
Lebesgue measure that satisfies the assumptions of Lemma 6.7, which immediately
implies that there exists a constanisuch that

| [ Pruesytdue) = s PPy,
N TV

<C [ [ llvet Anv.] B3 (dve) P Pr(do,)
SJIN

< 20\//N [ ve||2 P*Pr.(dve) < Cet="/2

Here, we used Lemma 6.6 to go from the second to the third line, and we used the
fact that the covariange at’Pr. is T.P.Q?P. for the last estimate.
UsingPr. (0, -) = Pr.(0, -) together with Lemma 6.5, we get immediately

| P Pr. — pllltv < Ce e ™" < Ce .

This concludes the proof of (6.20) and thus of Theorem 6.9. O

Appendix A Decay Properties of the Invariant Measure

In this appendix we show that the invariant measure for a non-degenerate diffusion
with polynomial coefficients is smooth and all of its derivatives decay exponen-
tially. Throughout this appendix;’ denotes a fixed polynomial froR™ to R™ of
degreep — 1 (p > 1is an integer which is equal @in the application we have in
mind) and such that there exist strictly positive constahendd such that

(z, F(x)) < C|z||* — 6]|z||*, Vx e R". (A.1)
We will considerz to be the solution of the non-degenerate SDE
dz(t) = F(x)dt + dW(t) , (A.2)

wherelV consists ofn independent standard Wiener processes. It is easy to show
that (A.2) possesses a unique invariant measure with a smooth depsitith
respect to the Lebesgue measurddn The result on the decay propertiesggfis

the following.

Theorem A.1 Let o, be as above. Then, there exists a constant0 such thato,
can be written as

—ell[|*?

ox(x) =e 9(x) , (A.3)
where the functiom, belongs to the Schwartz spacé.

Proof. Denote byy; the (random) flow generated by the solutions to (A.2) and by
‘P, the semigroup defined on finite measures by

(Pep)(A) = E(uop; H)(A) .
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Since’P; maps every measure into a measure with a smooth density, it can be
restricted to a positivity preserving contraction semigroup R, dx). The gen-
eratorK of P; is given by

(Ko)(x) = 3A0(x) — F(z) Vo(x) — (div F)(z) o(x) .

We now define an operatdf on L2(R", dx) by closing the operator defined Gf°

by
K = e(g”xHQPKe_g”;EHQP . (A4)

An easy computation shows thatgifs small enough, one has
K+K'=A+G(), (A.5)

KT is the formal adjoint (inL?) of K andG : R® — R is a polynomial of degree
4p — 2 satisfying
Gz) < C = &2,

for some positive constant. A standard argument (segg.the proof of Prop. B.3
in [EHOQ] or the proof of Prop. 5.5 in [HNO3]) shows th&tis maximal accretive
and is therefore the generator of a quasi-boun@gdemigroup on ¥R", dx).
Furthermore, (A.5) implies thak” has compact resolvent. Sinee<lzl™ is an
eigenfunction of* with eigenvalue, K must also have an eigenvaldieDenote
by g, the corresponding eigenfunction. By the definition#of the functiong,
given by o, (z) = e~<l=I* ¢, (x) must be an eigenfunction with eigenvaltief
K. An argument given for example in [EPR99] shows thamust be positive,
and therefore it is the invariant measure of (A.2). It thus remains to showg,that
belongs to the Schwartz space.

For this, we use some of the results of [EHO03]. Following the notation of that
paper, we introduce a family of weighted Sobolev spa&®$ with o, 5 € R as
the following subset of tempered distributio$ on R™:

S4B = fu e . | AN u e 2R},

where the operatak is defined as the positive square root\df=1—- """, 6? =
1 — A, andA is the multiplication operatak? = 1 + ||z]|2.
We equip the spacg®” with the scalar product

(f.9)as = (A*A°f,A“Ag) 2 . (A.6)

We also use the corresponding norjng|, g. Note that these spaces are actually a
particular case of the more general class of Sobolev spaces introduced in [BC94].

Retracing the proof of [EH03, Lem. 3.2] we see that for every paj#, there
exists a constar’ such that

[(fs K9)as — (KT f,9)apl < Cllfllas 1 grzp-1ll9llass prop 1
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holds for everyf andg in .. Combining this with (A.5) shows that, for every pair
a, (3, there exists a consta@t such that

fulas53-1 < CUt (A + s + 0lls 3 pap3)
= C((u, (K + KNuas + [ullay 1 gyop-3) (A7)
< O(1Ktlass + o3 prs2p3)

holds for everyu € ..
Taking formallyu = g, in (A.7) and using the fact thdt' g, = 0, we get

lgsllas < Cllgslla_1 51 -

Since theL?-norm of g, finite, this shows thag, belongs to the intersection of

all the spaces®? and thus ta7. Since we didn’t knowa priori that g, belongs

to .7 (this is what we want to prove after all!), this argument appears not to be
very rigorous. However, it can easily be made rigorous by approximatity a
sequence of functions i’ and estimating the errors carefully. This concludes the
proof of Theorem A.1. O
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