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The aim of this note is to provide a very short overview of a number of recent
results that aim at supplementing the theory of Harris chains [MT93] by an al-
ternative theory yielding weak instead of strong convergence results. This turns
out to be much more suitable in many infinite-dimensional situations where strong
convergence simply doesn’t take place.

Let us first recall the basic concepts of the theory of Harris chains. Throughout
all of this note, we fix a Polish space X (the ‘state space’ of our system) and a
stochastically continuous semigroup of Feller Markov transition kernels {Pt}t≥0

on X . One of the most basic notions in the theory of Harris chains is that of a
small set:

Definition 0.1. A set A ⊂ X is ‘small’ (for the semigroup {Pt}t≥0) if there exists
δ > 0 and t ≥ 0 such that ‖Pt(x, · )− Pt(y, · )‖TV ≤ 2− δ for every pair x, y ∈ A.

This is actually slight weakening of the usual notion of smallness (see [MT93])
which is somewhat more suitable for the purpose of this note. Another important
notion is that of a strong Feller semigroup:

Definition 0.2. The semigroup {Pt} is strong Feller if there exists t ≥ 0 such
that Ptφ is continuous for every bounded Borel measurable function φ : X → R.

Finally, we say that a point x ∈ X is accessible if there exists t ≥ 0 such
that Pt(y, U) > 0 for every y ∈ X and every neighbourhood U of x. With these
definitions at hand, we have [MT93, DPZ96]:

Theorem 0.3. If a Markov semigroup is strong Feller and has an accessible point,
then every compact set is small. Furthermore, it can have at most one invariant
probability measure.

If one knows furthermore that the process remains in ‘small’ regions of the phase
space for most of the time, then one can say much more. In order to measure the
stability of a process, the concept of a Lyapunov function is useful:

Definition 0.4. A measurable function V : X → R+ is a Lyapunov function if
there exist strictly positive constants C, γ and K such that the bound

PtV (x) ≤ Ce−γtV (x) +K ,

holds for every x ∈ X and for every t ≥ 0.

Given a Lyapunov function V , one can define a weighted total variation norm
on the space of all signed measures that integrate V by

‖µ‖V =
∫
X

(
1 + V (x)

)
|µ(dx)| .

With this definition at hand, we have (see [MT93]; see also [HM08b] for a simple
proof):
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Theorem 0.5 (Harris). If a Markov semigroup admits a Lyapunov function V

such that the level sets {x : V (x) ≤ C} are all small, then there exist constants C̃
and γ̃ such that

‖Ptµ− Ptν‖V ≤ C̃e−γ̃t‖µ− ν‖V ,

for every t ≥ 0 and every pair of probability measures µ and ν on X . In particular,
Pt admits exactly one invariant probability measure.

The problem with the theory of Harris chains is that it is not very well adapted
to infinite-dimensional problems. While probability measures on finite-dimensional
spaces are ‘often’ absolutely continuous with respect to some reference measure
(usually Lebesgue measure), this is not so often the case in infinite dimensions
due to the lack of a ‘natural’ reference measure. It is therefore relatively ‘rare’
for a Markov semigroup on an infinite-dimensional space to have the strong Feller
property. (Basically, some rather strong form of invertibility is typically required
of the covariance operator of an infinite-dimensional diffusion for it to generate a
strong Feller semigroup, see for example [DPEZ95, DPZ96, EH01].) In particular,
one does often not expect to have convergence in a total variation norm as in
Theorem 0.5.

This suggests that one should look for an alternative ‘weak’ (i.e. dealing with
weak convergence rather than total variation convergence) theory. This can be
achieved by making use of the following notion. An increasing sequence dn of
continuous pseudo-metrics on X is called totally separating if one has dn(x, y)↗ 1
as n → ∞ for any x 6= y. Each of these metrics can be lifted in a natural way to
the space of probability measures on X by

d(µ, ν) = sup
Lipd φ=1

∫
X
φ(x)

(
µ− ν

)
(dx) ,

where we denote by Lipd φ the (minimal) Lipschitz constant of φ : X → R with
respect to the metric d. With this definition, it turns out [HM06] that for any
system of totally separating pseudo-metrics, one has the identity

‖µ− ν‖TV = 2 sup
n≥0

dn(µ, ν) .

On the other hand, it is known [Sei01, Hai08] that the strong Feller property
is equivalent to the continuity of transition probabilities in the total variation
distance. Therefore, a Markov semigroup is strong Feller if and only if there exists
t ≥ 0 such that, for every x ∈ X , one has

inf
U3x

sup
y∈U

sup
n≥0

dn(Pt(x, · ),Pt(y, · )) = 0 ,

where the first infimum runs over all neighbourhoods of x. This motivates the
following natural extension to the strong Feller property [HM06]:

Definition 0.6. A Markov semigroup Pt satisfies the asymptotic strong Feller
property if there exists a sequence tn ↗ ∞ and a system dn of totally separating
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continuous pseudo-metrics such that, for every x ∈ X , one has

inf
U3x

sup
y∈U

sup
n≥0

dn(Ptn(x, · ),Ptn(y, · )) = 0 .

This definition is not only natural, it is also useful as can be seen by [HM06]:

Theorem 0.7. If a Markov semigroup is asymptotically strong Feller and has an
accessible point, then it can have at most one invariant probability measure.

Under slightly stronger assumption, it is also possible to give a generalisation of
Harris’ theorem on exponential convergence to this setting [HM08b]. To conclude,
let us point out that the asymptotic strong Feller property can be verified in
a number of situations where the strong Feller property is either known to fail
(stochastic delay equations with fixed delay in the diffusion coefficient [HM08b])
or conjectured to fail (stochastic PDEs satisfying a Hörmander-type condition, but
driven only by finitely many Wiener processes [HM08b]).
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