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Abstract

In this article, we consider the problem of homogenising the linear heat
equation perturbed by a rapidly oscillating random potential. We consider
the situation where the space-time scaling of the potential’s oscillations is not
given by the diffusion scaling that leaves the heat equation invariant. Instead,
we treat the case where spatial oscillations are much faster than temporal
oscillations. Under suitable scaling of the amplitude of the potential, we prove
convergence to a deterministic heat equation with constant potential, thus
completing the results previously obtained in [PP12].

1 Introduction

We consider the parabolic PDE with space-time random potential given by

o (z,t) = 0%u (x,t) + 5_5V<§, Eia)ua(w, t), (1.1)
u(x,0) = up(z) ,

where z € R, t > 0 and V is a stationary centred random field. The homogenisation
theory of equations of this type has been studied by a number of authors. The
case when V' is time-independent was considered in [IPP08, Ball0]. The articles
[CKPO1, DIPP06] considered a situation where V' is a stationary process as a function
of time, but periodic in space. Purely periodic / quasiperiodic operators with large
potential were also studied in [BLP78, Koz83].

For o > 2 and 8 = §, (1.1) was studied in [PP12], where it was shown that its
solutions converge as € — 0 to the solutions to

ou(w,t) = Ou(x,t) + Vu(z,t), u(z,0) = up(x), (1.2)
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where the constant V is given by

in the case a > 2 and

3 00 [e9) 6_%
V= O(x,t)dxdt, 1.4
A[ﬂ?ﬂ ) (1.4)

in the case a = 2. Here, ®(z,t) = EV(0,0)V (x,t) is the correlation function of V'
which is assumed to decay sufficiently fast.

In the case 0 < a < 2, it was conjectured in [PP12] that the correct scaling to
use in order to obtain a non-trivial limit is § = 1/2 + «//4, but the corresponding
value of V was not obtained. Furthermore, the techniques used there seem to break
down in this case. The main result of the present article is that the conjecture does
indeed hold true and that the solutions to (1.1) do again converge to those of (1.2)
as € — 0. This time, the limiting constant V is given by

1 [8(1)
Vesm ) R (-5)

where we have set ®(s) := [ ®(z, s)dx.

Remark 1.1 One can “guess” both (1.3) and (1.5) if we admit that (1.4) holds.
Indeed, (1.3) is obtained from (1.4) by replacing ®(z,t) by ®(dx,t) and taking the
limit 6 — 0. This reflects the fact that this corresponds to a situation in which, at the
diffusive scale, the temporal oscillations of the potential are faster than the spatial
oscillations. Similarly, (1.5) is obtained by replacing ®(x,t) with 6 '®(6 'z, ¢) and
then taking the limit 6 — 0, reflecting the fact that we are in the reverse situation
where spatial oscillations are faster. These arguments also allow to guess the correct
exponent 3 in both regimes.

The techniques employed in the present article are very different from [PP12]:
instead of relying on probabilistic techniques, we adapt the analytical techniques
from [Hail3a].

From now on, we will rewrite (1.1) as

ot (z,t) = 02u(w,t) + Vo(w, )us(x,t) , u(w,0) = up(x) ,
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where V. is the rescaled potential given by
Vi(a,t) = e-2vary (1)
’ g e

Before we proceed, we give a more precise description of our assumptions on the
random potential V.

1.1 Assumptions on the potential

Besides some regularity and integrability assumptions, our main assumption will be
a sufficiently fast decay of maximal correlations for V. Recall that the “maximal
correlation coefficient” of V', subsequently denoted by p, is given by the following
definition where, for any given compact set K C R?, we denote by Fi the o-algebra
generated by {V(x,t) : (z,t) € K}.

Definition 1.2 For any r > 0, o(r) is the smallest value such that the bound

E(p1(V)pa(V)) < or)/EGH(V) EG(V) .

holds for any two compact sets Ki, K5 such that

d(Kl,KQ)dZEf inf inf (|$1—$2|+|t1—t2|) ZT,
(z1,t1)€K (z2,t2) €K

and any two r.v.’s ¢;(V') such that ¢;(V') is Fk,-measurable and Ep;(V') = 0.

Note that o is a decreasing function. With this notation at hand, we then make the
following assumption:

Assumption 1.3 The field V is stationary, centred, continuous, and C* in the x-
variable. Furthermore,

E(|V(z,t)P + 10,V (z,t)]") < o0
for every p > 0.

For most of our results, we will furthermore require that the correlations of V'
decay sufficiently fast in the following sense:

Assumption 1.4 The mazimal correlation function o from Definition 1.2 satisfies
o(R) < (14 R)~1? for every q > 0.
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Remark 1.5 Retracing the steps of our proof, one can see that in order to obtain
our main result, Theorem 1.8, we actually only need this bound for some sufficiently
large ¢q. Similarly, the assumption on the z-differentiability of V' is not absolutely
necessary, but simplifies some of our arguments.

Let us first give a few examples of random fields satisfying our assumptions.

Example 1.6 Take a measure space (M, v) with some finite measure v and a func-

tion ¥: M x R*> = R such that

[W(m, z,t)| + 0.4 (m, x,1)]|
sup sup
meM it 1+ ‘x’q + |t|q

for all ¢ > 0. Assume furthermore that v satisfies the centering condition

/ll/r{//\/l?/}(m»y,s)y(dm)dyds:o‘

Consider now a realisation . of the Poisson point process on M x R? with intensity
measure v(dm) dy ds and set

V(J},t) = / / / ¢(m7y—$73—t) u(dm,dyads) :
MJRJIR
Then V satisfies Assumptions 1.3 and 1.4.

<00,

Example 1.7 Take for V a centred Gaussian field with covariance ® such that
W Pz, )| + 020 (x, t)]
ot 1+ |z|7 + |t|e

for all g > 0. Then V does not quite satisfy Assumptions 1.8 and 1.4 because V and

0.V are not necessarily continuous. However, it is easy to check that our proofs still
work in this case.

)

The advantage of Definition 1.2 is that it is invariant under the composition
by measurable functions. In particular, given a finite number of independent ran-
dom fields {Vi,...,Vi} of the type of Examples 1.6 and 1.7 (or, more generally,
any mutually independent fields satisfying Assumptions 1.3 and 1.4) and a function
F: R* — R such that

1. EF(Vi(z,t),..., Vi(x,t)) =0,
2. F, together with its first partial derivatives, grows no faster than polynomially
at infinity.
Then, our results hold with V(z,t) = F(Vi(z,1),..., Vi(z,1)).



1 INTRODUCTION 5

1.2 Statement of the result

Consider the solution to the heat equation with constant potential

Ou(z,t) = O2u(w,t) + Vu(x,t), t>0,2 €R; (1.6)
u(x,0) = uo(z),

where V is defined by (1.5). Then, the main result of this article is the following
convergence result:

Theorem 1.8 Let V be a random potential satisfying Assumptions 1.3 and 1.4, and
let uy € C3/2(R) be of no more than exponential growth. Then, as € — 0, one has
us(t,x) — u(t, x) in probability, locally uniformly in x € R and t > 0.

Remark 1.9 The precise assumption on ug is that it belongs to the space c;”’/ ? for
some ¢ € R, see Section 2.1 below for the definition of this space.

Remark 1.10 The fact that EV = 0 is of course not essential, since one can easily
subtract the mean by performing a suitable rescaling of the solution.

To prove Theorem 1.8, we use the standard “trick” to introduce a corrector that
“kills” the large potential V. to highest order. The less usual feature of this problem
is that, in order to obtain the required convergence, it turns out to be advantageous
to use two correctors, which ensures that the remaining terms can be brought under
control. These correctors, which we denote by Y¢ and Z¢, are given by the solutions
to the following inhomogeneous heat equations:

Y (1) = RV () + Vil 1) |

_ 1.7
0,25 (x,t) = P Z°(x,t) + |0, Y (, ) ]* — VL(1), (L.7)

where we have set V.(t) = E|0,Y*(x,t)|*. In both cases, we start with the flat (zero)
initial condition at ¢ = 0. Writing
v (2, t) = u(z,t) exp [—(Y(x, t) + Z°(x,1))],
Theorem 1.8 is then a consequence of the following two claims:
1. Both Y*© and Z¢ converge locally uniformly to 0.

2. The process v° converges locally uniformly to the solution u of (1.6).
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It is straightforward to verify that v solves the equation
O = 020" + Voo +2(0,Y° + 0,2°)0,0° + (|(9$Za|2 + 2(9:,;ZQ%Y‘S)v€ , (1.8)

with initial condition ug. The second claim will then essentially follow from the first
(except that, due to the appearance of nonlinear terms involving the derivatives of the
correctors, we need somewhat tighter control than just locally uniform convergence),
combined with the fact that the function V.(t) converges locally uniformly to the
constant V.

Remark 1.11 One way of “guessing” the correct forms for the correctors Y¢ and
Z¢ is to note the analogy of the problem with that of building solutions to the KPZ
equation. Indeed, performing the Cole-Hopf transform h® = logu®, one obtains for
h® the equation

Ok = 02hF + (9,h°)° + V..,

which, in the case where V. is replaced by space-time white noise, was recently
analysed in detail in [Hail3a]. The correctors Y¢ and Z°¢ then arise naturally in this
analysis as the first terms in the Wild expansion of the KPZ equation.

This also suggests that it would be possible to find a diverging sequence of con-
stants C. such that the solutions to

Ot (w,t) = 02u(x,t) + ey (—, —a) u(z,t) — Cout(x,t)

converge in law to the solutions to the multiplicative stochastic heat equation driven
by space-time white noise. In the non-Gaussian case, this does still seem out of reach
at the moment, although some recent progress can be found in [Hail3b].

The proof of Theorem 1.8 now goes as follows. In a first step, which is rather
long and technical and constitutes Section 2 below, we obtain sharp a priori bounds
for Y¢ and Z¢ in various norms. In a second step, which is performed in Section 3,
we then combine these estimates in order to show that the only terms in (1.8) that
matter are indeed the first two terms on the right hand side.

Remark 1.12 Throughout this article, the notation X < Y will be equivalent to
the notation X < CY for some constant C' independent of ¢.
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2 Estimates of Y° and Z¢

In this section, we shall prove that both Y¢ and Z¢ tend to zero as ¢ — 0, and
establish further estimates on those sequences of functions which will be needed for
taking the limit of the sequence v°. But before doing so, let us first introduce some
technical tools which will be needed both in this section and in the last one.

2.1 Weighted Holder continuous spaces of functions and the
heat semigroup

First of all, we define the notion of an admissible weight w as a function w: R — R,
such that there exists a constant C' > 1 with

- w)
A T (2.1)

for all pairs (x,y) with |z —y| < 1. Given such an admissible weight w, we then
define the space C,, as the closure of Cg° under the norm

/()]
w = w = Su :
11l = 1l =500 23
We also define C for a € (0,1) as the closure of C§° under the norm
|f(x) = fy)]

Hf”mw = Hf”w + sup .
lz—y|<1 UJ(l’)’% - y’a

Similarly, for o > 1, we define C¢ recursively as the closure of C3° under the norm

1l = [1F Nl + 11 lla—1.0 -

It is clear that, if w; and wy are two admissible weights, then so is w = w; ws.
Furthermore, it is a straightforward exercise to use the Leibniz rule to verify that
there exists a constant C' such that the bound

1f1/2llow < Cllfillarw [ f2llazw (2.2)

holds for every f; € C3i, provided that o < ay A as.

We now show that a similar inequality still holds if one of the two Holder expo-
nents is negative. For a € (—1,0), we can indeed define weighted spaces of negative
“Holder regularity” by postulating that Cg is the closure of C5° under the norm

Y f(z)d
”f“a,w = Ssup |sz’ f(Z) Z|

o—yj<1 W(T)|z —ylott
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In other words, we essentially want the antiderivative of f to belong to C2!, except
that we do not worry about its growth.
With these notations at hand, we then have the bound:

Proposition 2.1 Let wy; and wy be two admissible weights and let oy < 0 < o be
such that ag > |aq|. Then, the bound (2.2) holds with o = .

Proof. We only need to show the bound for smooth and compactly supported ele-
ments f; and f5, the general case then follows by density. Denote now by F} an
antiderivative for fi, so that

Yy Yy
| = [ aedne.
where the right hand side is a Riemann-Stieltjes integral. For any interval I C R,

we now write
Ifl ;= sup ‘f(x)_f(y)’ )
U warar T —yl®

It then follows from Young’s inequality [You36| that there exists a constant C' de-
pending only on the precise values of the «; and on the constants appearing in the
definition (2.1) of admissibility for the weights w;, such that

<A@ Fi() = F@)| + Clalas e | Filor gz — g2 et

< w(m)]x - y’alJrl(Hf?HO,wz“leal,wl + CHf2”042,w2Hf1HOé1,w1) )

which is precisely the requested bound. O

/ b dR(2)

There are two types of admissible weights that will play a crucial role in the
sequel:
eo(x) = exp(—llz]),  pale) =1+ [a]",
where the exponent x will always be positive, but ¢ could have any sign. One has of
course the identity
€0 m = €pim - (2.3)

Furthermore, it is straightforward to verify that there exists a constant C' such that
the bound
Pr(@)ec(z) < CUT, (2.4)

holds uniformly in z € R, x € (0, 1], and ¢ € (0, 1].
Finally, we have the following regularising property of the heat semigroup:
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Proposition 2.2 Let o € (—1,00), let B > «, and let £,k € R. Then, for every

t > 0, the operator F; extends to a bounded operator from Cg, to Cg and from CJ_ to

C]i. Furthermore, for every o > 0 and ko > 0, there exists a constant C' such that
the bounds

—Q

_B=a _B=a
1P fllger < C 2 M fllaee s [1Pgllope < C 2 ligllape s

hold for every f € CZ, every g € C5, every t € (0,1], every |{| < £y, and every
|| < Ko-

Proof. The proof is standard: one first verifies that the semigroup preserves these
norms, so that the case [ = « is covered. The case of integer values of [ can easily be
verified by an explicit calculation. The remaining values then follow by interpolation.

O

2.2 Bounds and convergence of Y° and Z°
For any integer k > 2, define the k-point correlation function ®* for z,t € R* by
W (z,t) = E(V(21,t1) ... V(g ty)) -
(In particular, ®@)(zy,t1,29,t5) = ®(x; — x9,t; — t3), where ® is the correlation
function of V' defined above.) With these notations at hand, we have the following
bound which will prove to be useful:
Lemma 2.3 The function ¥4 given by
D (2, 1) = W (2, 1) — O(xy — T, ty — o) D (w3 — T4, t5 — t4)
satisfies the bound

(U (z, )] < nllzr — o] + [t — ta])n(|22 — 24| + [t — ta]) (2.5)
+ (|1 — 24| + [t1 — ta])n(|z2 — 23] + [t2 — t3]) |

where the function n: Ry — R is defined by

n(r) =V EKo(r/3),  with K =4(|[V(z, )V (@, )]l + V(2. )]2).

where we write || - ||o for the L*(2) norm of a real-valued random variable.
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Remark 2.4 In the Gaussian case, one has the identity
\11(4) (l’, t) = (I)(l’l — XT3, tl —tg)q)(ajg — Xy, tQ —t4) +(I)($1 — T4, tl —t4>q)(33'2 — X3, tg —tg) s

so that the bound (2.5) follows from the fact that ¢ dominates the decay of the
correlation function .

Proof. For the sake of brevity denote &; = (x;,t;). We set

Ry = max dist (fi» U{é}}» Ry = maxdist <{fi1,fi2}7 {§i37€i4}>a
T J#i

where the second maximum is taken over all permutations {iy, is, 13,74} of {1,2,3,4}.
Consider first the case Ry > Ry. Without loss of generality we can assume that
Ry = dist(&1, U{E;})- It is easily seen that, in the case under consideration,
i

dlSt((é—l,f]) < ?)Rl, i, j = 1, 2, 3, 4. (26)
Then the functions ®® and ® (&, — &)P(£3 — &) admit the following upper bounds:
(@ (€1, &2, 65,60)| = [E(V(E)V(E)V (&)V (£))]

< o(R)[[V (&) |2l V (€2)V (€3)V (€l
< o(R)IV (Ol (V(€))?]l2,

and
(& — &)P(& — &) < o(R)IIVIZ IV
Therefore,
[0 (@, 1) < o(R) (VI (V(E)[l2 + IV ]13)

From (2.6) and the fact that p is a decreasing function we derive

Ko(R1) =n(BR1)n(3R1) < n(|& — &n(|&e — &l)-

This yields the desired inequality.
Assume now that R; < Ry and dist({&1,&2}, {&3,&4}) = Re. In this case

diSt(€1,§2> < Ry and diSt(€3,€4) < Rs. (27)

Indeed, if we assume that dist(&,&2) > Ra, then dist(&y, {&s,&3,&4}) > Ry and, thus,
R1 > Ry which contradicts our assumption. We have

U (&, &, &, &) = |2W (&1, &, 6, &) — (&1 — &)P(& — &) (2.8)
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= [E([V(&)V (&) — E(V(E)V(ENV(&)V () — E(V(&)V(€))])|
< o(R)[I(V(£))]I3 .

In view of (2.7), dist(&1,&3) < 3Ry and dist (&2, {4) < 3Ry. Therefore,
Ko(Ry) < n(|& — &)n(|& — &l),

and the desired inequality follows.
It remains to consider the case Ry < Ry and dist({&1,&3}, {&2, &}) = Ra; the case
dist({&1, &4}, {€2,&3}) = Ry can be addressed in the same way. In this case

diSt(gl,é—g) > RQ, diSt(£1,€4) > RQ, diSt(gl,gg) < Rs.
Therefore, dist(&1, {&2,&3,84}) = dist(&1,&3), and we have

D@ (&1, &, &, 6)| < o(|é — NIV IV (E)?]]2
D61 — &)P(& — &4)| < o(R2) [V I3 < o(l& = &DIV 5.
This yields
W (&, &, 8, &)] < o1& — &SIV V)2 + IVI3)

In the same way one gets

W (&, 6,8,8)] < o1& — &N (IVEOI(VE)3 2+ IV]3)

From the last two estimates we obtain

W (&, 6,8,8)] < Volle — &D)Voel(l& — &l (IVEOIII(V )2+ IVI3)
smm—3D0@—@u

This implies the desired inequality and completes the proof of Lemma 2.3. O

In order to prove our next result, we will need the following small lemma:

Lemma 2.5 Let F': R, — R, be an increasing function with F(r) < r?. Then,
Jo (L4 7)"PdF(r) < oo as soon as p > q.

Proof. We have [[°(1+4r)PdF(r) < 1+ [“r7PdF(r), so we only need to bound
the latter. We write

/1 rPdF(r <Z/

k>0

2k+1

rPdF(r) <y 27 / dF(r) <y 2 Phouhtl)

k>0 k>0

2k‘+1

This expression is summable as soon as p > ¢, thus yielding the claim. O
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Lemma 2.6 Fixt > 0 and let o : Rx Ry — R be a smooth function with compact
support. Define ps(x,t) = 673p(%,4). Then, for allp > 1, £,6 > 0, one has the

bound
{ (//%fc—y,t_s)v(y’ )dyds)p}l/p

( —-1/2— a/4/\5 1/2 04/4/\5 3/2 a/4) ;

where C, depends on p, on the supremum and the support of ¢, and on the bound of
Assumption 1.3.

Proof. We consider separately the cases § > max(e,£%), § < min(e, &%), as well as
min(e, e®) < 6 < max(e,e®).

Assume first that § > max(e, ). Without loss of generality we also assume that
p is even, that is p = 2k with £ € N. Then

Vi ::E(/t/ %05(33—y,t—s)vs(y,s)dyds)p
/ // /H%x_yz’ (HV yir 1)) A3,

where dij = dy, . .. dys, and d5 = ds; . ..dss,. Changing the variables §; = e 'y; and
S; = €~ %s;, and considering the definition of s and V., we obtain

ja5_5 6k o—k— 5 _2k+2ak / /HSO x—eyl’ — e S’) (HV Ui, 8 )dyds

[0,t/c2]2k R2k =1

The support of the function H o(2=gh z—ef; t(sﬁ) belongs to the rectangle (z— k2 S, T+
=1

kgsw) X (t— k%sw, t+k%s@)2k, where s, is t2he diameter of support of o = (v, s).
Denote I} . = (0,2k%s,)%* and 113 = (0,2k%s,)%. Since V(y, s) is stationary, we
have

T < §Okh 82k+2akH(pH / / HV Ui, 5i )‘dﬁdg. (2.9)

(0.2k254)%* (0,2k 3% 5,,)2F
For any R > 0 we introduce a subset of R**

= 1. S 1 2 N < S: <
Vse(R) {(y,s) € s xIIy_ 1max dist( y],yyz R, g;zg:k dlst(sj,ysz) < R},
17£] 7]
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and denote by |Vs.|(R) the Lebesgue measure of this set. It is easy to check that
the set Vs.(0) is the union of sets of the form

~ - 1 1~ o~ ~ _ Tz, s _ =
{(y’ S) € H(S,a X Hé,e “ Y = Yigs ooy Yigpr = Yk Sj1 = Sjar -5 Sjap1 = S]Qk}

with 4 # i, and j; # jn, if | # m, that is, V;.(0) is the union of a finite number
of subsets of 2k-dimensional planes in R*. The 2k-dimensional measure of this set
satisfies the following upper bound

S\ Fk 62\ Fk
Vac )l <0 (2) (55)
Therefore,
Nk 752\ K
< (Z s 2k
Vael(R) 5 (5) (5“) B (2.10)
For each (7, 5) € Vs.(R) we have
2%
E(TTV@30)| < oRICEIV 2@V 200 (2.11)
i=1

Combining (2.9), (2.10) and (2.11) yields

L7;,6 < (5—6k€—k—“2k€2k+2ak/ Q(R) d‘Va,‘g’(R) < (5—31:6"‘7’“ .
0

Here, the last inequality holds due to Assumption 1.4, combined with (2.10) and
Lemma 2.5. Therefore, recalling that p = 2k, we have the bound

(TP < 57820/, (2.12)

In the case 6 < min(e, %) we have
t t 2k 2k
Ti0= [ fooof TLeste = et = soB(T] Vetonos))dgas
o Jo JrR JR i=1
t t 2k 2k
< [... lps(z — yi t — s4)| ‘E Ve(yi, $i) ‘dg’dé’
ol fef I (1T vit0)

¢ t 2k
SE((VE(ZA,&)%)// // H|g05($—yz,t—82>|d?7d§
o Jo JR JR ]
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_ ak
SRl

so that
(TP S emt/omels, (2.13)

Finally, if we are in the regime € < § < £°/2, then

jpe,a _ 5Ok kT E / /H90<w_€yl i 3z> (HV Gi. B )dyds

[0,¢t/c2]2k R2k =1

S - B IIv¢msz)wym;

(0,2k 5,1 5p)2k (0 2k65«p)2k

e}

k
S L N P e P O N T

(0,2k 25 5,)2k 0
—k_—ak/2
<o e .

Hence,
(j;ﬁ)ﬂp < §1/2ema/d (2.14)

so that, combining (2.12), (2.13) and (2.14), the desired estimate holds. 0

Lemma 2.7 Fixt > 0 and let ¢ : R x Ry — R, be a function which is uniformly
bounded and decays exponentially in x, uniformly over s € [0,t].
Then, for all p > 1, € > 0, one has the bound

t pq1/p
[E (/ / o(x —y,t — s)Vo(y,s) dy ds> } < C,(e7MPmelA N gmold N o/t
0o JR
Here, the proportionality constant depends on p, on t, on the bounds on o, and on

the bounds of Assumption 1.5.

Proof. The proof of this lemma is similar (with some simplifications) to that of the
previous statement. We leave it to the reader. 0

Lemma 2.8 For each p > 1, there ewists a constant C, such that for all € > 0,
t>0,zeR,

[E(Y= (2, 0)[")]" < Cp(1+ Vi) (2.15)
E(|0,Y*(z, )" < C, (2.16)
[B(|02Y(z,1)|")]"" < Cpe . (2.17)
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Proof. Our main ingredient is the existence of a function ¢: Ry — [0, 1] which is
smooth, compactly supported in the interval [1/2,2], and such that

Yo =1,

for all » > 0.
As a consequence, we can rewrite the heat kernel as

= Z 2_2ngpn<x, t) , (2.18)

nez

where
on(m,t) = 2% p(2"x, 2°") | oz, t) = p(z)p(Va? +1t) . (2.19)

The advantage of this formulation is that the function ¢ is smooth and compactly
supported. The reason why we scale ,, in this way, at the expense of still having
a prefactor 272" in (2.18) is that this is the scaling used in Lemma 2.6 (setting
0=2"").

We use this decomposition to define Y7 by

Y, (z,t) =27 2”/ /son —y,t—8) Vely, s)dyds (2.20)

so that, by (2.18), one has Y* = Y Y°. Setting ¢(z,t) = 0,p(x,t) and defining
Gnlx,t) = 25"p(2"x, 2*"t) as in (2.19) the derivative of Y¢ can be decomposed in
the same way:

t
0, Y7 (x,t) = 2_"/ / On(r —y,t —s) V(y,s)dyds . (2.21)
0o Jr

We first bound the derivative of Y. Since ¢ is smooth and compactly supported,
the constants appearing in Lemma 2.6 do not depend on ¢ and we have

(Elaij(a:,t)]P)l/P < on/2.0/4 p g=n/2~a/d _ o—|5+5 logye|

Since the sum (over n) of this quantity is bounded independently of €, (2.16) now
follows by the triangle inequality.

Note that (2.17) follows from the same argument, if we integrate by parts (hence
differentiate V7).
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In order to finally establish (2.15), we bound Y* in a similar way. This time
however, we combine all the terms with n < 0 into one single term, setting

=S, Vo - | t [ e Vtusyays,

n<0
so that Y= =3 _ Y7>+ Y= Similarly to before, we obtain
(BIYE(z, t)]P) /P S 2 n/2e0/t | (2.22)

In order to bound Y¢, we apply Lemma 2.6 with 6 = 1 and ¢ = p~. It is immediate
that c;(t) < v/t and c3(t) < 1, so that

(B[Y=(z, )P) " < Vie/* .
Combining this with (2.22), summed over n > 0, yields the desired bound. 0
We deduce from Lemma 2.8 and equation 1.7

Corollary 2.9 Ase — 0, Y¢(x,t) — 0 in probability, locally uniformly with respect
tox andt.

Proof. 1t follows from Lemma 2.8 and equation 1.7 that for some a,b > 0 and all
p > 1, all bounded subsets D C R, x R,

sup BJ[Y*(z, )] < ™, (2.23)
(z,t)eD

sup E[|0,Ye(x,t)P)] S e, sup E[|0YS(x,t)[F] S e P (2.24)

(x,t)eD (x,t)€ED

We deduce from (2.23) that for all (z,t), (y,s) € D, p > 1,
E[[Y*(z,t) = Y*(y, s)["] S €™,

and from (2.24), writing Y*(z,t) — Y*(y, s) as the sum of an integral of 0,Y° and an
integral of 9,Y ¢, we get

E{[Y=(e,t) ~ Y*(y. )]  (lz — yl + |t — s]re "
Hence from Holder’s inequality
E[|Y*(z,t) — Yg(y’s)’aJrﬁ] <(lz—y|+ |t - S‘)ﬁgaa—ﬁb_

Provided 8 > 2 and a > b/a, we obtain an estimate which allows us to deduce the
result from a combination of (2.23) and Kolmogorov’s Lemma. O
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We will also need

Lemma 2.10 The function t — V.(t) is continuous, and, for each ¢ > 0, there
exists a positive constant VL such that

Vo) = V0 ast — oo

hmVO / ‘://@(y,t)
e—0 ’ ) 2\/H
R

and V.(t) =V as e — 0, uniformly in t € [1,+00].

Furthermore,

Proof. Writing ®, for the correlation function of V. and using the definition of V,(t),

we have
v -|(5 / / e~ Vi) ) |

_E:<//pt (2 —y)Valy ,s)dydsﬂ

=E //pt s D, (x — 2)V(y, 8)Ve(z,r) dy dzdsdr
0RR

I
\

pt—s<x - y)pt—r(x - Z)(Ds(y —Z,5 — 7") dy dZ dS d?"
OO0RR

= /t/t//p's(y)pi(Z)@a(y —zs—r)dydzdsdr.

OO0RR

It is easy to check that, for each € > 0, this integral is a continuous function of
t and that it converges, as ¢ — +o0o. Performing the change of variables iy =
ararty 2 = Tty S = ey I = ivars, renaming the new variables and setting
T. = ¢~ '=/?t we obtain

T:T:

2
= E*Zt Yy—=z S—T)
8 167T //// 33/27-3/2 ¢<8é_2783¢1 ddedsdr

00RR
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We represent the integral on the right-hand side as

T:T:

_ 1 22 _z2_ 22 y—z S—rT
—_ - 4s 4r
Vi) = //// g @(65_3,531) dydzdsdr +r.(t).  (2.25)

0 0RR

The further analysis relies on the following limit relation:

lim sup |r.(¢)]=0. (2.26)

e=0 g<t<too

In order to justify it we denote » = % — ¢ and s = 75, and divide the integration

area into four parts as follows
I ={(y, 2,5,7) eER*x (R*)? : s <™ r <™},
( )2:5%1<S§TE,T§€M},
ER?x (RY)? 1 s <™, e <7 <T.},
( )2 '8%1<S§T€7€%1<TSTE}.

In II; we have

e¥1 g#1
Py s dsd
|?J3| ’i‘e e 4T(I)<yl ifﬂ_j) dz dy ds dr < 02/ ‘f 7; = 402%™, (2.27)
Ss2r2 €2 4 &2 5212
7 00

To estimate the integral over II, we first notice that there exists a constant C such
that

2
Me,% <4
S2
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uniformly over ass s > 0 and y € R. Then,

2 2 .
vl |Z|6_L_”<I>(y S T)dydzdsdr
o]

33 T a>
s2712 €271
12
T.
o [ [ /q)(y:i,—s:_i)dy
S 57“2 2 271 £2
_ e /// ZT |z|dzdrds
sr (2.28)
T: €71
d d = drd
—0015 // a T 18 Scclg%// (P< gS,1> : 18
sre2 €2 sr2
e*1 0
= Ei d T =~ d
:20015”521/ <I>< ;fl>—8 < 200177 / (I)(S)—S
€2 s s
e*1 6%1+2%
< Cy(50 + 22)e” 7 | logel;
here ®(t) = [, ®(x,t)dz, and CI>( ) stands for max{®(s) : t —1 < s < t}. A similar

estlmate holds true for the integral over II3. Therefore,

i ‘ Yy z _% 43(1)( —Z S— >d dsdsdrl — 0 (229)
81_1}(1) 0<St1<lgoo Wme 8%,%75‘1 7 )ayazasar| =U. .
11, UIIo Ul 3
We also have
2’2 _22 22 Yy—z2 S—r
- 4s 4r
/ 53/2r3/26 Q)(géff ) 53_1> dy dz ds dr
11 UIlo
27T, g¥1+2x
s—r dsdr _ ds dr
= CS // 2;{ 3 - / / @(S - 7‘) 3 (230)
o (s+7r)2 / / (s +7)3
1 5”1"’274 o) 5%1+2%
3 dsd - dsd
scf [ Be-ngzref [ et so
(s+7r)z S (s+71)2

0 0
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Combining this estimate with a similar estimate for the integral over II; U II3, we
obtain

22 2 y—z S—r

I ‘ _Z_h 4r<1>< — ):. 2.31

lim 0<Stl<1£)roo / 372,32¢ T E dydzdsdr| =0 (2.31)
11; UII UIIg

In order to justify (2.26) it remains to show that

z Z2

z2
yze h-& — ke = y—z S—r
I | <I>< N )dddd‘zo 2.32
fing 05;5500/ I g o) Wdedsdr| =0 (232)

We first estimate

2 g e
J.(t) ;:/—3’/Zzl/264r R o0 55 ) dydzdsdr
s°rer

g7 g2
H4

2

lyz||2° — 9P| -2/ - 2N y—z s—r
S4 o232 ¢ (e te )‘I)( proat e )dydzdsdr (2.33)

Iy

W+ ly—z® —2 2P+ |y—z® _2\ 2 y—z s—r
< 7 _— 4s A B 4s Ar
~ € /( /2732 © T 52732 © )6 Dy ( o >dydzdsdr
Iy

with @, (z,t) = |2|®(x,t); here we have used the inequality |e® —e’| < |b— al(e® +€b)
and the estimates |yz|ly + 2| < C(ly]> + |y — 2]?) and |yz||ly + 2| < C(|z]* + |y — 2|?)
that follow from the Young inequality. Let us estimate the integral

w [P 2 =z s
€ /We e 4 CI>1< o )dydzdsdr

ex’
Iy

] e B B 0o 0o 1
< 035”/ — e Py (u, S—J) dydzdsdr < 0452%/ / —@1 — > dsdr
sr3/ gx gm2x s

€¥1 g”1
9 S

— dsd
= % / / <I>1(s—7’) 5ar < Ose*(loge)?;

ST

£*1 +23¢ £*1 +23¢

here C5 = max(z*e™"), and ®,(t) stands for Jg ®1(z,t)dz. Other terms on the
right-hand side of (2.33) can be estimated in a similar way. Thus we obtain

lim sup J.(t) =0. (2.34)
€70 o<t<oo
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The inequality

2 22 _ _
|€_H€ 43(1)(y z’ 2_—22> dydzdsdr < Ce*(loge)?

6%

lyz — =
§3/2y3/2

Iy

can be obtained in the same way with a number of simplifications. This yields (2.26).
It remains to notice that

T. T. .
2.2 (y—z s—T
//// 53/27“3/2 @(8—% - )dydzdsdr
e*1e*1 R R
T. T.
_2 2 _ss—r
=g’ ///83/2713/2 s CID(S_Z )dzdsdr
X171 R
7 E— s—r dsdr ds dr
e [fo) e | [
0€ // e=2%) (s + )3/ (s=7) s+r)3/2
e¥le”1 u1+2;¢ u1+2;¢

:q%//&&ﬂ@%%%+&@

lim sup |R.(t)|=0.
e=201<t<+00

Combining the last two relations with (2.25) and (2.26), we obtain the desired state-
ment. O

Lemma 2.11 For any T > 0, any even integer k > 2, any 0 < f < 1/k, any p > k
and any Kk > 0, there exists a constant C' such that for all0 <t < T, e >0,

(3 1/ 21—k £ 1/ —K
(EIY<)5,,) " < C it (Blo.y ), )" <C e,
e 1/ —k
(Elo.Y=(1)]15,,)"" < Ce

Proof. We establish the estimates of the norms of 9,Y¢(t) only. The norm of Y*(t)
is estimated similarly. Let ¢ > 1 and p = ¢k. For any x < y, we have the identity

y
10, YE(t,y) — 0, Y (t,2)|" = k/ (0.YE(t,2) — 0, Y (L, )" LO2Ye(t, 2)dz
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Raising this to the power ¢ and taking expectations, we obtain

q

E(|0,Y(t,y) — 0, Y (t,2)[") < k*

y
/ (0.YE(t,2) — 0, Y(t,2))" P02V (t, 2)d=

<(y—a)t /y E(‘(@xys(t, z) — 0. Y<(t, :v))k_lﬁgYa(t, z)’q) dz

< (y - 2" B(0.Ye (1) PO B(2Y (1)) S (y - a)e, (2.35)

where we have used the stationarity (in z) of the processes 9,Y*(t, z) and 92Y*(t, z),
as well as the estimates (2.16) and (2.17) from Lemma 2.8.

As a consequence of Kolmogorov’s Lemma, there exists a stationary sequence of
positive random variables {&, },ez such that for every n € Z, the bound

sup |0,Ye(t,z)| <&,
z€[n,n+1]

holds almost surely, and such that (Egﬁ)l/ P < ek for every p > 1. The bound on
10:Y2(t)lo,p. then follows at once.

The bound on ||0,Y*(t)||5,. follows in virtually the same way, using the fact that
(2.35) also yields the bound

|8xY€(t>$) - axys(tay” < g

— Sn

sup 5
z,y€n—1,n+1] |ZL’ - y|

for some stationary sequence of random variables én which has all of its moments
bounded in the same way as the sequence {¢,}. m

We further obtain the following bound on the “negative Holder norm” of 9,Y*:

Corollary 2.12 For any T > 0, k being any even integer, p > k and k = 1/k, there
exists a constant Cr,, . such that

1/p
(BIY<@IP, ) " < Crp 7,
40 K
forall0<t<T,e>0. O

Proof. We note that

[Ye(t, @) — V(¢ )|
0. Y (t)||_1, = sup
10:Y ()| -1, SO @l — g

)
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|0, YE(t, x)|

| 6(t7 :L.)|
Ye(t)|lop, =sup ———, 0. Y (t)|lo,p. = sup
|| ( )||07p ” ( )HOP N pn(ib’)

z pﬂ(m)

We have, for |z —y| <1,

Yot 2) — Yot y)| _ (!YE(t, ) = Y<(t, y)|)1/4 ( Ve(t, @) = V(L y)l)‘”“

()] — yP Pu(z) pe(z)|z =y
Ye(t vet, y) a,Y<(t, 2)|\*/*
o (el g WY (g VMY
Pr() Pr(y) e<e<y  Pe(2)
It remains to take supremums and apply Holder’s inequality. O

We have similar results for Z¢(x,t).

Lemma 2.13 For each p > 1, there exists a constant C' such that for all ¢ > 0,
t>0,reR,

EB(z:@0P)] " <o+ e

Proof. The main ingredient in the proof is a bound on the correlation function of
the right hand side of the equation for Z¢, which we denote by

A(z,2) = Cov(\@xYE(z)\Q, |8IY5(2’)|2) .
Inserting the definition of Y¢, we obtain the identity

(z,2") / / z—z21)P(z— ZQ)P(Z/—Zg)p(Z/—Z4)\Il£4)(Zl, e zg)dzy e dzy

where 3 .
P(z) = P(x,t) = O.pi()
with p; the standard heat kernel and
W (2, ) = e (D 2 ,t_4> ,
€ g e~ g
Here, we used the shorthand notation z; = (x;,t;), and integrals over z; are under-
stood to be shorthand for fot fR dx; dt;. We now make use of Lemma 2.3, which
allows to factor this integral as

2
|Ac(z,2)] < < // z—21)P(2 — 23)0-(21 — 23) dzy ng) = 0%z, ,
where we used the shorthand notation

0e(, t)—@(z t)-

g e
We will show below that the following bound holds:
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Lemma 2.14

ay/2
6:(2) S (1A o )+ (Lt + )2 E (2= )+ (1t + 1),
dp ('27 Z/)
where d, denotes the parabolic distance given by
dp(z, 2V = |z — 2P+ |t 1] .

Taking this bound for granted, we write as in the proof of Lemma 2.8 Z¢ =
75 + 3,20 Z5 with

2:2) =2 [ ale = #) (0P - Vile))

and similarly for Z°. Squaring this expression and inserting the bound from Lemma 2.14,
we obtain

E|Z:(z))P <27 / / enlz — 2z = 2") (C(F = 2") + (L + ' +1")%e) d2’ d2"
sz [ @@ vt

where we made use of the scaling of ¢,, given by (2.19). Performing the corresponding
bound for Z¢, we similarly obtain

B|Z () < t/gg(z') ds + (14 1)

The claim now follows from the bounds

t ary
2N dY < / / S dwds < e
/CE( ) — 0 R (’x|2+|5’)7 ~

Proof of Lemma 2.1/4. Similarly to the proof of Lemma 2.8, we write

P INLTE)

ny-= >0 no -~ >0

with

Fn2 (2, 2)) = e 1mggmmm //@nl(z — 21)Pny (21 — 22)0e(21 — 22) dz1 ds
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Here, for n > 1, ¢, is defined as in the proof of Lemma 2.8, whereas ¢, is different
from what it was there and is defined as

Po(x,t) = Oupy (7).

By symmetry, we can restrict ourselves to the case n; > ny, which we will do in the
sequel. In the case where ny > 0, the above integral could be restricted to the set of
pairs (21, 29), such that their parabolic distance satisfies

dp(zla 2:2) > (dp(z7 Z,) _ 22—712)

where (---), denotes the positive part of a number.
Replacing @, by its supremum and integrating out ¢,, and g. yields the bound

0l2(2,2') S (14 byt + 1)) 22127/ / o(z3) dzs
As(n2)

where A.(0) = R? and
{23 : dy(0,23) > € C“/Q(Clp(z,z') —22_n2)+} ;

for ny > 0. (Remark that the prefactor 1 + ¢ + t' is relevant only in the case
ny = ng = 0.) It follows from the integrability of ¢ that one always has the bound

0l (2,2) S (14 Oyt + 1)) 27027 e0/2 2.36
€ 2,

Moreover, we deduce from Assumption 1.4 that, whenever ny > 0 and d(z,z2") >
23=2 one has the improved bound: for any v > 0,

60{7/2 )

oz ) S PP (LA s
P\~

(2.37)

The bound (2.36) is sufficient for our needs in the case ny = 0, so we assume that
ny > 0 from now on.

We now obtain a second bound on g"*(z, z') which will be useful in the regime
where ny is very large. Since the integral of ¢,, is bounded independently of ny, we
obtain

o (z,) ettt sup /@nz(zl — 22)0:(21 — 22)dz . (2.38)

dp(z1,2)<21—™

We now distinguish between three cases, which depend on the size of z — /.
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Case 1: d,(z,2') < /2. In this case, we proceed as in the proof of Lemma 2.6,
which yields

o2 (z, 2 SeTlmsoTmm Sup/ﬂbnz(zz)é)e(zz — 21) d2

21

t
<eglmsgmme sup/ sup - (2 — 1, S)/ Pna (2, t2) di ds
R 0

T s

< 5_1_32_"1/ SUp 0c (9, 8) dy <7227 (2.39)
R

S

Case 2: |v—2'| > d,(z,2')/2 > £*/2/2. Note that in (2.38), the argument of o. can
only ever take values with |x; — x9| € B.(ng) where

B.(ny) ={z : |z| > (Ja — /| —2°7™)} .

As a consequence, we obtain the bound

AT1,m2

02(z, ) SeTTE2TM™ sup sup o.(7, )

-’EGBE(nz) seR

The case of interest to us for this bound will be 26-72 < g/ 2 in which case we deduce
from this calculation and Assumption 1.4 that

~ni, / —1-%$9—ni1— € 7
or(z,2) Sem T2 "2(—%(272,)) ,

where « is an arbitrarily large exponent. Choosing v large enough, we conclude that
one also has the bound

G (z, ) < em8om (1 A i)7 (2.40)
: o dp(z,2') ’

which will be sufficient for our needs.

Case 3: [t —t'| > d2(z,2)/2 > €*/2. Similarly, we obtain

o (z,2") 532"1/ SUp 0z (2, 5) ds
R s€B.L(n2)

where
Bl(ngy) = {S sl > 5*0‘(|t —t| - 2872712)} ‘
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Restricting ourselves again to the case 26772 < ¢2/2, this yields as before
a/2
o € 2
e (z,2) S et (1n —— ) 2.41
o (e, 2) £ T (2.41)

It now remains to sum over all values ny > ny > 0.
For ny = 0, we sum the bound (2.36), which yields

Zg"l’ 2,2) < (L+t+t)e? .

n1>0

In order to sum the remaining terms, we first consider the case d,(z,2’) < /2. In
this case, we use (2.36) and (2.39) to deduce that

Z @gl,ng (Z, Z,) 5 2n2€a/2 A 2—n2€—a/2 ,

ni>ng

so that in this case g.(z,2') <1+ (1 +t+t)e*/2,

It remains to consider the case d,(z, ') > £%/2. For this, we break the sum over
ns in three pieces:

N1 ={ny>1:2">d(z,2z)/8},
= {ny>1:2%2<2™ <d(z,2)/8},
= {ny>1:27" <2762}

For ny € Ny, we only make use of the bound (2.36). Summing first over n; > ny and
then over ny € Ny, we obtain

/2

Z Z in’m dpe(z’ Z’) :

TL2€N1 ni>ng

For ny € Ny, we only make use of the bound (2.37). Summing again first over n; > ngy
and then over ny € Ny, we obtain

8047/2

Z Z ‘QnLnQ dZ(Z,Z/) :

n2 €Nz ni1>ng
In the last case, we similarly use either (2.40) or (2.41), depending on whether
|z — 2| > dy(2,2)/2 or [t —t'| > d2(z,2)/2, which yields again

a'y/2

2 2L S ey

no€N3 ni>ng

Combining the above bounds, the claim follows. O
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Lemma 2.15 For any T > 0, p > 1, Kk > 0, 0 < B < 1, there exists a constant
Crprp such that for all0 <t <T, >0,

1/ —r
(B0, Z2(I1%,,) " < Crpuse
Proof. This is a corollary of Lemma 2.11 and Proposition 2.2. O
As a Corollary we deduce

Corollary 2.16 For anyT >0, p > 1, k > 0, there exists a constant Cr,, such that
forall0<t<T,e>0,

3 1/ a/2—K £ 1/ a/d—k
EBIZE W8, 77 < Crac | [BI0.25 0" < Croe™/™"
We will need moreover
Corollary 2.17 Ase — 0, Z%(x,t) — 0 in probability, locally uniformly in (x,t).

Proof. 1t follows from estimate (2.16) that for any p > 1 and any bounded subset
K C R x R*, there exists a constant C,, x such that

E(/ (10.Y* ()| —Vs)pdxdt) <Cpk.
K

Then, by the Nash estimate, we obtain
E||Z%|lovx) < Ck, (2.42)

where the Holder exponent v > 0 and Cx do not depend on €. As a consequence of
the first estimate of Corollary 2.16 we have

E|| 275, 40y < Cpsee™ />, (2.43)

Combining (2.42) and (2.43) one can easily derive the required convergence. 0
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3 Proof of the main result

Before concluding with the proof of our main theorem, we prove a result for a
parabolic heat equation with coefficients which live in spaces of weighted Holder
continuous functions.

We consider an abstract evolution equation of the type

o = 0*u+ Fou+Gu, (3.1)

where F' and G are measurable functions of time, taking values in C/ B for some
suitable k > 0 and § < % The main result of this section is the following:

Theorem 3.1 Let § and k be positive numbers such that 8+ k < % and let F' and
G be functions in L (R+,Cp_f) for every p > 1.

loc
Let furthermore { € R and ug € CSL,/2. Then, there exists a unique global mild
solution to (3.1). Furthermore, this solution is continuous with values in c;”f for
every m < £ and the map (ug, F, G) — w is jointly continuous in these topologies.

Proof. We will show a slightly stronger statement, namely that for every 6 > 0
sufficiently small, the mild solution has the property that u, € C7,_. for ¢ € [0,7] for
arbitrary values of T'> 0. We fix T, § and ¢ from now on.

We then write

lullser = sup fluells, ,,
te[0,7)

and we denote by B; ¢ 1 the corresponding Banach space. With this notation at hand,
we define a map My : Bsyr — Bsor by

t
(./\/lTu)t = / P_, (FS Oyus + Gy us) ds , te0,7].
0

It follows from Proposition 2.2 that we have the bound

3+

t
|(Mrw) s, gC/O(t_S) 21| F, yu, + G s

H—ﬁ,eeﬂst
Combining Proposition 2.1 with (2.3) and (2.4), we furthermore obtain the bound

|7, 0, < C(01t = s1) 1 Full-pn |0

5:€0—6s

||_,87€£76t
< COft = sl) "I Fsll-ppelellser
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where the proportionality constant C' is uniformly bounded for 6 € (0, 1] and bounded
¢ and s. A similar bound holds for G us so that, combining these bounds and using
Holder’s inequality for the integral over ¢, we obtain the existence of constants { > 0
and p > 1 such that the bound

IMrullser < C5 T (1F ] sy + 1G] o) Bl -

holds. Since the norm of this operator is strictly less than 1 provided that T is small
enough, the short-time existence and uniqueness of solutions follow from Banach’s
fixed point theorem. The existence of solutions up to the final time T follows by
iterating this argument, noting that the interval of short-time existence restarting
from w(t) at time ¢ can be bounded from below by a constant that is uniform over
all t € [0,T1], as a consequence of the linearity of the equation.

Actually, we obtain the bound

1/¢
lells o, e S ep(CEUIF ey + 1G1 ie)) ") ol e,

where the constants C' and ¢ depend on the choice of ¢ and §.

The solutions are obviously linear in uy since the equation is linear in u. It
remains to show that the solutions also depend continuously on F' and G. Let u be
the solution to the equation

o =0+ Fou+Gu, (3.2)
and write o = u — u. The difference o then satisfies the equation
o=>0+Fd0+Go+ (F—F)ou+(G-G)a,
with zero initial condition. Similarly to before, we thus have

t
Ot = (MTQ)t + / Pt—s((Fs - Fs) 6xas + (Gs - Gs) as) ds .
0
It follows from the above bounds that

lellser < Mrol

5.0+ CO T (|1F = Fll ey + 1G = Gl Nallser -

Over short times, the required continuity statement thus follows at once. Over fixed
times, it follows as before by iterating the argument. 0

Remark 3.2 In principle, one could obtain a similar result for less regular initial
conditions, but this does not seem worth the additional effort in this context.
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We now have finally all the ingredients in place to give the proof of our main
result.

Proof of Theorem 1.8. We apply Theorem 3.1 with 5 = i and k = %. Note that the
equation (1.8) for v° is precisely of the form (3.1) with

F=20,Y°+20,72°, G=10,2°*+20,7°0,Y° .

It follows from Corollaries 2.12 and 2.16 that, for every p > 0 and 6 > 0, one has the
bound

T 1/p a
B [ I, @ s <,
0

say. Similarly, it follows from Lemma 2.11 and Corollary 2.16 that one actually has
the bound
T Up o s
E [ Gl @ " set
0

which is stronger than what we required. As a consequence of Theorem 3.1, this
shows immediately that v* — u in probability, locally uniformly both in space and
in time. We conclude by recalling that from Corollary 2.9 and 2.17, the correctors
Y¢e and Z¢ themselves converge locally uniformly to 0 in probability. 0
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