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Abstract

In this article, we consider the problem of homogenising the linear heat
equation perturbed by a rapidly oscillating random potential. We consider
the situation where the space-time scaling of the potential’s oscillations is not
given by the diffusion scaling that leaves the heat equation invariant. Instead,
we treat the case where spatial oscillations are much faster than temporal
oscillations. Under suitable scaling of the amplitude of the potential, we prove
convergence to a deterministic heat equation with constant potential, thus
completing the results previously obtained in [PP12].

1 Introduction

We consider the parabolic PDE with space-time random potential given by

∂tu
ε(x, t) = ∂2

xu
ε(x, t) + ε−βV

(
x

ε
,
t

εα

)
uε(x, t) , (1.1)

uε(x, 0) = u0(x) ,

where x ∈ R, t ≥ 0 and V is a stationary centred random field. The homogenisation
theory of equations of this type has been studied by a number of authors. The
case when V is time-independent was considered in [IPP08, Bal10]. The articles
[CKP01, DIPP06] considered a situation where V is a stationary process as a function
of time, but periodic in space. Purely periodic / quasiperiodic operators with large
potential were also studied in [BLP78, Koz83].

For α ≥ 2 and β = α
2
, (1.1) was studied in [PP12], where it was shown that its

solutions converge as ε→ 0 to the solutions to

∂tu(x, t) = ∂2
xu(x, t) + V̄ u(x, t) , u(x, 0) = u0(x) , (1.2)
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where the constant V̄ is given by

V̄ =

∫ ∞
0

Φ(0, t) dt , (1.3)

in the case α > 2 and

V̄ =

∫ ∞
0

∫ ∞
−∞

e−
x2

4t

2
√
πt

Φ(x, t) dx dt , (1.4)

in the case α = 2. Here, Φ(x, t) = EV (0, 0)V (x, t) is the correlation function of V
which is assumed to decay sufficiently fast.

In the case 0 < α < 2, it was conjectured in [PP12] that the correct scaling to
use in order to obtain a non-trivial limit is β = 1/2 + α/4, but the corresponding
value of V̄ was not obtained. Furthermore, the techniques used there seem to break
down in this case. The main result of the present article is that the conjecture does
indeed hold true and that the solutions to (1.1) do again converge to those of (1.2)
as ε→ 0. This time, the limiting constant V̄ is given by

V̄ =
1

2
√
π

∫ ∞
0

Φ(t)√
t
dt , (1.5)

where we have set Φ(s) :=
∫
R

Φ(x, s)dx.

Remark 1.1 One can “guess” both (1.3) and (1.5) if we admit that (1.4) holds.
Indeed, (1.3) is obtained from (1.4) by replacing Φ(x, t) by Φ(δx, t) and taking the
limit δ → 0. This reflects the fact that this corresponds to a situation in which, at the
diffusive scale, the temporal oscillations of the potential are faster than the spatial
oscillations. Similarly, (1.5) is obtained by replacing Φ(x, t) with δ−1Φ(δ−1x, t) and
then taking the limit δ → 0, reflecting the fact that we are in the reverse situation
where spatial oscillations are faster. These arguments also allow to guess the correct
exponent β in both regimes.

The techniques employed in the present article are very different from [PP12]:
instead of relying on probabilistic techniques, we adapt the analytical techniques
from [Hai13a].

From now on, we will rewrite (1.1) as

∂tu
ε(x, t) = ∂2

xu
ε(x, t) + Vε(x, t)u

ε(x, t) , uε(x, 0) = u0(x) ,
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where Vε is the rescaled potential given by

Vε(x, t) = ε−(1/2+α/4)V

(
x

ε
,
t

εα

)
.

Before we proceed, we give a more precise description of our assumptions on the
random potential V .

1.1 Assumptions on the potential

Besides some regularity and integrability assumptions, our main assumption will be
a sufficiently fast decay of maximal correlations for V . Recall that the “maximal
correlation coefficient” of V , subsequently denoted by %, is given by the following
definition where, for any given compact set K ⊂ R2, we denote by FK the σ-algebra
generated by {V (x, t) : (x, t) ∈ K}.

Definition 1.2 For any r > 0, %(r) is the smallest value such that the bound

E
(
ϕ1(V )ϕ2(V )

)
≤ %(r)

√
Eϕ2

1(V ) Eϕ2
2(V ) ,

holds for any two compact sets K1, K2 such that

d(K1, K2)
def
= inf

(x1,t1)∈K1

inf
(x2,t2)∈K2

(|x1 − x2|+ |t1 − t2|) ≥ r ,

and any two r.v.’s ϕi(V ) such that ϕi(V ) is FKi-measurable and Eϕi(V ) = 0.

Note that % is a decreasing function. With this notation at hand, we then make the
following assumption:

Assumption 1.3 The field V is stationary, centred, continuous, and C1 in the x-
variable. Furthermore,

E
(
|V (x, t)|p + |∂xV (x, t)|p

)
<∞

for every p > 0.

For most of our results, we will furthermore require that the correlations of V
decay sufficiently fast in the following sense:

Assumption 1.4 The maximal correlation function % from Definition 1.2 satisfies
%(R) . (1 +R)−q for every q > 0.
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Remark 1.5 Retracing the steps of our proof, one can see that in order to obtain
our main result, Theorem 1.8, we actually only need this bound for some sufficiently
large q. Similarly, the assumption on the x-differentiability of V is not absolutely
necessary, but simplifies some of our arguments.

Let us first give a few examples of random fields satisfying our assumptions.

Example 1.6 Take a measure space (M, ν) with some finite measure ν and a func-
tion ψ : M×R2 → R such that

sup
m∈M

sup
x,t

|ψ(m,x, t)|+ |∂xψ(m,x, t)|
1 + |x|q + |t|q

<∞ ,

for all q > 0. Assume furthermore that ψ satisfies the centering condition∫
R

∫
R

∫
M
ψ(m, y, s) ν(dm) dy ds = 0 .

Consider now a realisation µ of the Poisson point process on M×R2 with intensity
measure ν(dm) dy ds and set

V (x, t) =

∫
M

∫
R

∫
R

ψ(m, y − x, s− t)µ(dm, dy, ds) .

Then V satisfies Assumptions 1.3 and 1.4.

Example 1.7 Take for V a centred Gaussian field with covariance Φ such that

sup
x,t

|Φ(x, t)|+ |∂2
xΦ(x, t)|

1 + |x|q + |t|q
<∞ ,

for all q > 0. Then V does not quite satisfy Assumptions 1.3 and 1.4 because V and
∂xV are not necessarily continuous. However, it is easy to check that our proofs still
work in this case.

The advantage of Definition 1.2 is that it is invariant under the composition
by measurable functions. In particular, given a finite number of independent ran-
dom fields {V1, . . . , Vk} of the type of Examples 1.6 and 1.7 (or, more generally,
any mutually independent fields satisfying Assumptions 1.3 and 1.4) and a function
F : Rk → R such that

1. EF (V1(x, t), . . . , Vk(x, t)) = 0,

2. F , together with its first partial derivatives, grows no faster than polynomially
at infinity.

Then, our results hold with V (x, t) = F (V1(x, t), . . . , Vk(x, t)).
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1.2 Statement of the result

Consider the solution to the heat equation with constant potential

∂tu(x, t) = ∂2
xu(x, t) + V̄ u(x, t), t ≥ 0, x ∈ R; (1.6)

u(x, 0) = u0(x),

where V̄ is defined by (1.5). Then, the main result of this article is the following
convergence result:

Theorem 1.8 Let V be a random potential satisfying Assumptions 1.3 and 1.4, and
let u0 ∈ C3/2(R) be of no more than exponential growth. Then, as ε → 0, one has
uε(t, x)→ u(t, x) in probability, locally uniformly in x ∈ R and t ≥ 0.

Remark 1.9 The precise assumption on u0 is that it belongs to the space C3/2
e` for

some ` ∈ R, see Section 2.1 below for the definition of this space.

Remark 1.10 The fact that EV = 0 is of course not essential, since one can easily
subtract the mean by performing a suitable rescaling of the solution.

To prove Theorem 1.8, we use the standard “trick” to introduce a corrector that
“kills” the large potential Vε to highest order. The less usual feature of this problem
is that, in order to obtain the required convergence, it turns out to be advantageous
to use two correctors, which ensures that the remaining terms can be brought under
control. These correctors, which we denote by Y ε and Zε, are given by the solutions
to the following inhomogeneous heat equations:

∂tY
ε(x, t) = ∂2

xY
ε(x, t) + Vε(x, t) ,

∂tZ
ε(x, t) = ∂2

xZ
ε(x, t) + |∂xY ε(x, t)|2 − V̄ε(t),

(1.7)

where we have set V̄ε(t) = E|∂xY ε(x, t)|2. In both cases, we start with the flat (zero)
initial condition at t = 0. Writing

vε(x, t) = uε(x, t) exp [−(Y ε(x, t) + Zε(x, t))],

Theorem 1.8 is then a consequence of the following two claims:

1. Both Y ε and Zε converge locally uniformly to 0.

2. The process vε converges locally uniformly to the solution u of (1.6).



1 INTRODUCTION 6

It is straightforward to verify that vε solves the equation

∂tv
ε = ∂2

xv
ε + V̄ε v

ε + 2(∂xY
ε + ∂xZ

ε)∂xv
ε +
(
|∂xZε|2 + 2∂xZ

ε∂xY
ε
)
vε , (1.8)

with initial condition u0. The second claim will then essentially follow from the first
(except that, due to the appearance of nonlinear terms involving the derivatives of the
correctors, we need somewhat tighter control than just locally uniform convergence),
combined with the fact that the function V̄ε(t) converges locally uniformly to the
constant V̄ .

Remark 1.11 One way of “guessing” the correct forms for the correctors Y ε and
Zε is to note the analogy of the problem with that of building solutions to the KPZ
equation. Indeed, performing the Cole-Hopf transform hε = log uε, one obtains for
hε the equation

∂th
ε = ∂2

xh
ε +
(
∂xh

ε
)2

+ Vε ,

which, in the case where Vε is replaced by space-time white noise, was recently
analysed in detail in [Hai13a]. The correctors Y ε and Zε then arise naturally in this
analysis as the first terms in the Wild expansion of the KPZ equation.

This also suggests that it would be possible to find a diverging sequence of con-
stants Cε such that the solutions to

∂tu
ε(x, t) = ∂2

xu
ε(x, t) + ε−

1+α
2 V

(
x

ε
,
t

εα

)
uε(x, t)− Cεuε(x, t) ,

converge in law to the solutions to the multiplicative stochastic heat equation driven
by space-time white noise. In the non-Gaussian case, this does still seem out of reach
at the moment, although some recent progress can be found in [Hai13b].

The proof of Theorem 1.8 now goes as follows. In a first step, which is rather
long and technical and constitutes Section 2 below, we obtain sharp a priori bounds
for Y ε and Zε in various norms. In a second step, which is performed in Section 3,
we then combine these estimates in order to show that the only terms in (1.8) that
matter are indeed the first two terms on the right hand side.

Remark 1.12 Throughout this article, the notation X . Y will be equivalent to
the notation X ≤ CY for some constant C independent of ε.
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2 Estimates of Y ε and Zε

In this section, we shall prove that both Y ε and Zε tend to zero as ε → 0, and
establish further estimates on those sequences of functions which will be needed for
taking the limit of the sequence vε. But before doing so, let us first introduce some
technical tools which will be needed both in this section and in the last one.

2.1 Weighted Hölder continuous spaces of functions and the
heat semigroup

First of all, we define the notion of an admissible weight w as a function w : R→ R+

such that there exists a constant C ≥ 1 with

C−1 ≤ w(x)

w(y)
≤ C , (2.1)

for all pairs (x, y) with |x − y| ≤ 1. Given such an admissible weight w, we then
define the space Cw as the closure of C∞0 under the norm

‖f‖w = ‖f‖0,w = sup
x∈R

|f(x)|
w(x)

.

We also define Cαw for α ∈ (0, 1) as the closure of C∞0 under the norm

‖f‖α,w = ‖f‖w + sup
|x−y|≤1

|f(x)− f(y)|
w(x)|x− y|α

.

Similarly, for α ≥ 1, we define Cαw recursively as the closure of C∞0 under the norm

‖f‖α,w = ‖f‖w + ‖f ′‖α−1,w .

It is clear that, if w1 and w2 are two admissible weights, then so is w = w1w2.
Furthermore, it is a straightforward exercise to use the Leibniz rule to verify that
there exists a constant C such that the bound

‖f1f2‖α,w ≤ C‖f1‖α1,w1‖f2‖α2,w2 , (2.2)

holds for every fi ∈ Cαiwi , provided that α ≤ α1 ∧ α2.
We now show that a similar inequality still holds if one of the two Hölder expo-

nents is negative. For α ∈ (−1, 0), we can indeed define weighted spaces of negative
“Hölder regularity” by postulating that Cαw is the closure of C∞0 under the norm

‖f‖α,w = sup
|x−y|≤1

|
∫ y
x
f(z) dz|

w(x)|x− y|α+1
.
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In other words, we essentially want the antiderivative of f to belong to Cα+1
w , except

that we do not worry about its growth.
With these notations at hand, we then have the bound:

Proposition 2.1 Let w1 and w2 be two admissible weights and let α1 < 0 < α2 be
such that α2 > |α1|. Then, the bound (2.2) holds with α = α1.

Proof. We only need to show the bound for smooth and compactly supported ele-
ments f1 and f2, the general case then follows by density. Denote now by F1 an
antiderivative for f1, so that∫ y

x

f1(z)f2(z) dz =

∫ y

x

f2(z) dF1(z) ,

where the right hand side is a Riemann-Stieltjes integral. For any interval I ⊂ R,
we now write

f α,I = sup
{x,y}⊂I

|f(x)− f(y)|
|x− y|α

.

It then follows from Young’s inequality [You36] that there exists a constant C de-
pending only on the precise values of the αi and on the constants appearing in the
definition (2.1) of admissibility for the weights wi, such that∣∣∣∫ y

x

f2(z) dF1(z)
∣∣∣ ≤ |f2(x)|

∣∣F1(y)− F1(x)
∣∣+ C f2 α2,[x,y] F1 α1+1,[x,y]|x− y|α1+α2+1

≤ w(x)|x− y|α1+1
(
‖f2‖0,w2‖f1‖α1,w1 + C‖f2‖α2,w2‖f1‖α1,w1

)
,

which is precisely the requested bound.

There are two types of admissible weights that will play a crucial role in the
sequel:

e`(x)
def
= exp(−`|x|) , pκ(x)

def
= 1 + |x|κ ,

where the exponent κ will always be positive, but ` could have any sign. One has of
course the identity

e` · em = e`+m . (2.3)

Furthermore, it is straightforward to verify that there exists a constant C such that
the bound

pκ(x)e`(x) ≤ C`−κ , (2.4)

holds uniformly in x ∈ R, κ ∈ (0, 1], and ` ∈ (0, 1].
Finally, we have the following regularising property of the heat semigroup:
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Proposition 2.2 Let α ∈ (−1,∞), let β > α, and let `, κ ∈ R. Then, for every
t > 0, the operator Pt extends to a bounded operator from Cαe` to Cβe` and from Cαpκ to
Cβpκ. Furthermore, for every `0 > 0 and κ0 > 0, there exists a constant C such that
the bounds

‖Ptf‖β,e` ≤ Ct−
β−α
2 ‖f‖α,e` , ‖Ptg‖β,pκ ≤ Ct−

β−α
2 ‖g‖α,pκ ,

hold for every f ∈ Cαe`, every g ∈ Cαpκ, every t ∈ (0, 1], every |`| ≤ `0, and every
|κ| ≤ κ0.

Proof. The proof is standard: one first verifies that the semigroup preserves these
norms, so that the case β = α is covered. The case of integer values of β can easily be
verified by an explicit calculation. The remaining values then follow by interpolation.

2.2 Bounds and convergence of Y ε and Zε

For any integer k ≥ 2, define the k-point correlation function Φ(k) for x, t ∈ Rk by

Φ(k)(x, t) = E
(
V (x1, t1) . . . V (xk, tk)

)
.

(In particular, Φ(2)(x1, t1, x2, t2) = Φ(x1 − x2, t1 − t2), where Φ is the correlation
function of V defined above.) With these notations at hand, we have the following
bound which will prove to be useful:

Lemma 2.3 The function Ψ(4) given by

Ψ(4)(x, t) = Φ(4)(x, t)− Φ(x1 − x2, t1 − t2)Φ(x3 − x4, t3 − t4) ,

satisfies the bound

|Ψ(4)(x, t)| ≤ η(|x1 − x3|+ |t1 − t3|)η(|x2 − x4|+ |t2 − t4|) (2.5)

+ η(|x1 − x4|+ |t1 − t4|)η(|x2 − x3|+ |t2 − t3|) ,

where the function η : R+ → R+ is defined by

η(r) =
√
K%(r/3), with K = 4

(
‖V (x, t)‖2‖V 3(x, t)‖2 + ‖V 2(x, t)‖2

2

)
,

where we write ‖ · ‖2 for the L2(Ω) norm of a real-valued random variable.



2 ESTIMATES OF Y ε AND Zε 10

Remark 2.4 In the Gaussian case, one has the identity

Ψ(4)(x, t) = Φ(x1−x3, t1− t3)Φ(x2−x4, t2− t4)+Φ(x1−x4, t1− t4)Φ(x2−x3, t2− t3) ,

so that the bound (2.5) follows from the fact that % dominates the decay of the
correlation function Φ.

Proof. For the sake of brevity denote ξj = (xj, tj). We set

R1 = max
1≤i≤4

dist
(
ξi,
⋃
j 6=i

{ξj}
)
, R2 = max dist

(
{ξi1 , ξi2}, {ξi3 , ξi4}

)
,

where the second maximum is taken over all permutations {i1, i2, i3, i4} of {1, 2, 3, 4}.
Consider first the case R1 ≥ R2. Without loss of generality we can assume that

R1 = dist(ξ1,
⋃
j 6=1

{ξj}). It is easily seen that, in the case under consideration,

dist((ξi, ξj) ≤ 3R1, i, j = 1, 2, 3, 4. (2.6)

Then the functions Φ(4) and Φ(ξ1− ξ2)Φ(ξ3− ξ4) admit the following upper bounds:

|Φ(4)(ξ1, ξ2, ξ3, ξ4)| = |E(V (ξ1)V (ξ2)V (ξ3)V (ξ4))|
≤ %(R1)‖V (ξ1)‖2‖V (ξ2)V (ξ3)V (ξ4)‖2

≤ %(R1)‖V (ξ)‖2‖(V (ξ))3‖2,

and
Φ(ξ1 − ξ2)Φ(ξ3 − ξ4) ≤ %(R1)‖V ‖2

2 ‖V ‖2
2

Therefore,
|Ψ(4)(x, t)| ≤ %(R1)

(
‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)
From (2.6) and the fact that % is a decreasing function we derive

K%(R1) = η(3R1)η(3R1) ≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|).

This yields the desired inequality.
Assume now that R1 < R2 and dist({ξ1, ξ2}, {ξ3, ξ4}) = R2. In this case

dist(ξ1, ξ2) < R2 and dist(ξ3, ξ4) < R2. (2.7)

Indeed, if we assume that dist(ξ1, ξ2) ≥ R2, then dist(ξ1, {ξ2, ξ3, ξ4}) ≥ R2 and, thus,
R1 ≥ R2 which contradicts our assumption. We have∣∣Ψ(4)(ξ1, ξ2, ξ3, ξ4)

∣∣ =
∣∣Φ(4)(ξ1, ξ2, ξ3, ξ4)− Φ(ξ1 − ξ2)Φ(ξ3 − ξ4)

∣∣ (2.8)
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=
∣∣E([V (ξ1)V (ξ2)− E(V (ξ1)V (ξ2))][V (ξ3)V (ξ4)− E(V (ξ3)V (ξ4))]

)∣∣
≤ %(R2)‖(V (ξ))2‖2

2 .

In view of (2.7), dist(ξ1, ξ3) ≤ 3R2 and dist(ξ2, ξ4) ≤ 3R2. Therefore,

K%(R2) ≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|),

and the desired inequality follows.
It remains to consider the case R1 < R2 and dist({ξ1, ξ3}, {ξ2, ξ4}) = R2; the case

dist({ξ1, ξ4}, {ξ2, ξ3}) = R2 can be addressed in the same way. In this case

dist(ξ1, ξ2) ≥ R2, dist(ξ1, ξ4) ≥ R2, dist(ξ1, ξ3) < R2.

Therefore, dist(ξ1, {ξ2, ξ3, ξ4}) = dist(ξ1, ξ3), and we have

|Φ(4)(ξ1, ξ2, ξ3, ξ4)| ≤ %(|ξ1 − ξ3|)‖V (ξ)‖2‖(V (ξ))3‖2

|Φ(ξ1 − ξ2)Φ(ξ3 − ξ4)| ≤ %(R2)‖V ‖4
2 ≤ %(|ξ1 − ξ3|)‖V ‖4

2.

This yields

|Ψ(4)(ξ1, ξ2, ξ3, ξ4)| ≤ %(|ξ1 − ξ3|)
(
‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)
In the same way one gets

|Ψ(4)(ξ1, ξ2, ξ3, ξ4)| ≤ %(|ξ2 − ξ4|)
(
‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)
From the last two estimates we obtain

|Ψ(4)(ξ1, ξ2, ξ3, ξ4)| ≤
√
%(|ξ1 − ξ3|)

√
%(|ξ2 − ξ4|)

(
‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)
≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|).

This implies the desired inequality and completes the proof of Lemma 2.3.

In order to prove our next result, we will need the following small lemma:

Lemma 2.5 Let F : R+ → R+ be an increasing function with F (r) ≤ rq. Then,∫∞
0

(1 + r)−pdF (r) <∞ as soon as p > q.

Proof. We have
∫∞

0
(1 + r)−pdF (r) ≤ 1 +

∫∞
1
r−pdF (r), so we only need to bound

the latter. We write∫ ∞
1

r−pdF (r) ≤
∑
k≥0

∫ 2k+1

2k
r−pdF (r) ≤

∑
k≥0

2−pk
∫ 2k+1

2k
dF (r) ≤

∑
k≥0

2−pk2q(k+1) .

This expression is summable as soon as p > q, thus yielding the claim.
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Lemma 2.6 Fix t > 0 and let ϕ : R×R+ → R+ be a smooth function with compact
support. Define ϕδ(x, t) = δ−3ϕ

(
x
δ
, t
δ2

)
. Then, for all p ≥ 1, ε, δ > 0, one has the

bound [
E

(∫ t

0

∫
R

ϕδ(x− y, t− s)Vε(y, s) dy ds
)p]1/p

≤ Cϕ
(
ε−1/2−α/4 ∧ δ−1/2ε−α/4 ∧ δ−3/2εα/4

)
,

where Cϕ depends on p, on the supremum and the support of ϕ, and on the bound of
Assumption 1.3.

Proof. We consider separately the cases δ > max(ε, εα), δ < min(ε, εα), as well as
min(ε, εα) ≤ δ ≤ max(ε, εα).

Assume first that δ > max(ε, εα). Without loss of generality we also assume that
p is even, that is p = 2k with k ∈ N. Then

J ε,δ
p := E

(∫ t

0

∫
R

ϕδ(x− y, t− s)Vε(y, s) dy ds
)p

=

∫ t

0

. . .

∫ t

0

∫
R

. . .

∫
R

2k∏
i=1

ϕδ(x− yi, t− si)E
( 2k∏
i=1

Vε(yi, si)
)
d~yd~s,

where d~y = dy1 . . . dy2k and d~s = ds1 . . . ds2k. Changing the variables ỹi = ε−1yi and
s̃i = ε−αsi, and considering the definition of ϕδ and Vε, we obtain

J ε,δ
p = δ−6kε−k−

αk
2 ε2k+2αk

∫
[0,t/εα]2k

∫
R2k

2k∏
i=1

ϕ
(x− εỹi

δ
,
t− εαs̃i
δ2

)
E
( 2k∏
i=1

V (ỹi, s̃i)
)
d~̃yd~̃s.

The support of the function
2k∏
i=1

ϕ
(
x−εỹi
δ
, t−ε

αs̃i
δ2

)
belongs to the rectangle (x−k δ

ε
sϕ, x+

k δ
ε
sϕ)2k× (t−k δ2

εα
sϕ, t+k δ

2

εα
sϕ)2k, where sϕ is the diameter of support of ϕ = ϕ(y, s).

Denote Π1
δ,ε = (0, 2k δ

ε
sϕ)2k and Π2

δ,ε = (0, 2k δ
2

εα
sϕ)2k. Since V (y, s) is stationary, we

have

J ε,δ
p ≤ δ−6kε−k−

αk
2 ε2k+2αk‖ϕ‖2k

C

∫
(0,2k δ

ε
sϕ)2k

∫
(0,2k δ

2

εα
sϕ)2k

∣∣∣E( 2k∏
i=1

V (ỹi, s̃i)
)∣∣∣d~̃yd~̃s. (2.9)

For any R ≥ 0 we introduce a subset of R4k

Vδ,ε(R) =
{

(ỹ, s̃) ∈ Π1
δ,ε×Π2

δ,ε : max
1≤j≤2k

dist(ỹj,
⋃
i 6=j

ỹi) ≤ R, max
1≤j≤2k

dist(s̃j,
⋃
i 6=j

s̃i) ≤ R
}
,
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and denote by |Vδ,ε|(R) the Lebesgue measure of this set. It is easy to check that
the set Vδ,ε(0) is the union of sets of the form

{(ỹ, s̃) ∈ Π1
δ,ε × Π1

δ,ε : ỹi1 = ỹi2 , . . . , ỹi2k−1
= ỹi2k , s̃j1 = s̃j2 , . . . , s̃j2k−1

= s̃j2k}

with il 6= im and jl 6= jm if l 6= m, that is, Vδ,ε(0) is the union of a finite number
of subsets of 2k-dimensional planes in R4k. The 2k-dimensional measure of this set
satisfies the following upper bound

|Vδ,ε(0)|2k ≤ C(k)
(δ
ε

)k( δ2

εα

)k
,

Therefore,

|Vδ,ε|(R) .
(δ
ε

)k( δ2

εα

)k
R2k, (2.10)

For each (ỹ, s̃) ∈ Vδ,ε(R) we have

∣∣∣E( 2k∏
i=1

V (ỹi, s̃i)
)∣∣∣ ≤ %(R)C1(k)‖V ‖L2(Ω)‖V 2k−1‖L2(Ω). (2.11)

Combining (2.9), (2.10) and (2.11) yields

J ε,δ
p . δ−6kε−k−

αk
2 ε2k+2αk

∫ ∞
0

%(R) d|Vδ,ε|(R) . δ−3kε
αk
2 .

Here, the last inequality holds due to Assumption 1.4, combined with (2.10) and
Lemma 2.5. Therefore, recalling that p = 2k, we have the bound

(J ε,δ
p )1/p . δ−3/2εα/4. (2.12)

In the case δ < min(ε, εα) we have

J ε,δ
p =

∫ t

0

. . .

∫ t

0

∫
R

. . .

∫
R

2k∏
i=1

ϕδ(x− yi, t− si)E
( 2k∏
i=1

Vε(yi, si)
)
d~y d~s

≤
∫ t

0

. . .

∫ t

0

∫
R

. . .

∫
R

2k∏
i=1

|ϕδ(x− yi, t− si)|
∣∣∣E( 2k∏

i=1

Vε(yi, si)
)∣∣∣d~y d~s

≤ E
(
(Vε(y1, s1)2k

) ∫ t

0

. . .

∫ t

0

∫
R

. . .

∫
R

2k∏
i=1

|ϕδ(x− yi, t− si)|d~y d~s
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. ε−k−
αk
2 ‖ϕ‖2k

L1 ,

so that
(J ε,δ

p )1/p . ε−1/2−α/4 . (2.13)

Finally, if we are in the regime ε < δ < εα/2, then

J ε,δ
p = δ−6kεk+ 3α

2
k

∫
[0,t/εα]2k

∫
R2k

2k∏
i=1

ϕ
(x− εỹi

δ
,
t− εαs̃i
δ2

)
E
( 2k∏
i=1

V (ỹi, s̃i)
)
d~̃y d~̃s

≤ δ−6kεk+3αk/2 ‖ϕ‖2k
L∞

∫
(0,2k δ

2

εα
sϕ)2k

∫
(0,2k δ

ε
sϕ)2k

∣∣∣E( 2k∏
i=1

V (ỹi, s̃i)
)∣∣∣d~̃y d~̃s

. δ−6kεk+3αk/2 ‖ϕ‖2k
L∞

∫
(0,2k δ

2

εα
sϕ)2k

‖V ‖L2(Ω)‖V 2k−1‖L2(Ω)

(δ
ε

)k ∞∫
0

%(R)Rk−1 dR

. δ−kε−αk/2.

Hence,
(J ε,δ

p )1/p . δ−1/2ε−α/4 (2.14)

so that, combining (2.12), (2.13) and (2.14), the desired estimate holds.

Lemma 2.7 Fix t > 0 and let ϕ : R×R+ → R+ be a function which is uniformly
bounded and decays exponentially in x, uniformly over s ∈ [0, t].

Then, for all p ≥ 1, ε > 0, one has the bound[
E

(∫ t

0

∫
R

ϕ(x− y, t− s)Vε(y, s) dy ds
)p]1/p

≤ Cϕ
(
ε−1/2−α/4 ∧ ε−α/4 ∧ εα/4

)
.

Here, the proportionality constant depends on p, on t, on the bounds on ϕ, and on
the bounds of Assumption 1.3.

Proof. The proof of this lemma is similar (with some simplifications) to that of the
previous statement. We leave it to the reader.

Lemma 2.8 For each p ≥ 1, there exists a constant Cp such that for all ε > 0,
t ≥ 0, x ∈ R,

[E(|Y ε(x, t)|p)]1/p ≤ Cp(1 +
√
t)εα/4 (2.15)

[E(|∂xY ε(x, t)|p)]1/p ≤ Cp (2.16)[
E
(∣∣∂2

xY
ε(x, t)

∣∣p)]1/p ≤ Cpε
−1. (2.17)
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Proof. Our main ingredient is the existence of a function ψ : R+ → [0, 1] which is
smooth, compactly supported in the interval [1/2, 2], and such that∑

n∈Z

ψ(2−nr) = 1 ,

for all r > 0.
As a consequence, we can rewrite the heat kernel as

pt(x) =
∑
n∈Z

2−2nϕn(x, t) , (2.18)

where
ϕn(x, t) = 23nϕ(2nx, 22nt) , ϕ(x, t) = pt(x)ψ(

√
x2 + t) . (2.19)

The advantage of this formulation is that the function ϕ is smooth and compactly
supported. The reason why we scale ϕn in this way, at the expense of still having
a prefactor 2−2n in (2.18) is that this is the scaling used in Lemma 2.6 (setting
δ = 2−n).

We use this decomposition to define Y ε
n by

Y ε
n (x, t) = 2−2n

∫ t

0

∫
R

ϕn(x− y, t− s)Vε(y, s) dy ds , (2.20)

so that, by (2.18), one has Y ε =
∑

n Y
ε
n . Setting ϕ̃(x, t) = ∂xϕ(x, t) and defining

ϕ̃n(x, t) = 23nϕ̃(2nx, 22nt) as in (2.19), the derivative of Y ε can be decomposed in
the same way:

∂xY
ε
n (x, t) = 2−n

∫ t

0

∫
R

ϕ̃n(x− y, t− s)Vε(y, s) dy ds . (2.21)

We first bound the derivative of Y ε. Since ϕ̃ is smooth and compactly supported,
the constants appearing in Lemma 2.6 do not depend on t and we have(

E|∂xY ε
n (x, t)|p

)1/p
. 2n/2εα/4 ∧ 2−n/2ε−α/4 = 2−|

n
2

+α
4

log2 ε| .

Since the sum (over n) of this quantity is bounded independently of ε, (2.16) now
follows by the triangle inequality.

Note that (2.17) follows from the same argument, if we integrate by parts (hence
differentiate Vε).
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In order to finally establish (2.15), we bound Y ε in a similar way. This time
however, we combine all the terms with n < 0 into one single term, setting

p−t (x) =
∑
n≤0

2−2nϕn(x, t) , Y ε
−(x, t) =

∫ t

0

∫
R

p−t−s(x− y)Vε(y, s) dy ds ,

so that Y ε =
∑

n>0 Y
ε
n + Y ε

−. Similarly to before, we obtain(
E|Y ε

n (x, t)|p
)1/p

. 2−n/2εα/4 . (2.22)

In order to bound Y ε
−, we apply Lemma 2.6 with δ = 1 and ϕ = p−. It is immediate

that c1(t) .
√
t and c3(t) . 1, so that(

E|Y ε
−(x, t)|p

)1/p
.
√
tεα/4 .

Combining this with (2.22), summed over n > 0, yields the desired bound.

We deduce from Lemma 2.8 and equation 1.7

Corollary 2.9 As ε→ 0, Y ε(x, t)→ 0 in probability, locally uniformly with respect
to x and t.

Proof. It follows from Lemma 2.8 and equation 1.7 that for some a, b > 0 and all
p ≥ 1, all bounded subsets D ⊂ R+ ×R,

sup
(x,t)∈D

E[|Y ε(x, t)|p] . εpa, (2.23)

sup
(x,t)∈D

E[|∂xY ε(x, t)|p] . ε−pb, sup
(x,t)∈D

E[|∂tY ε(x, t)|p] . ε−pb. (2.24)

We deduce from (2.23) that for all (x, t), (y, s) ∈ D, p ≥ 1,

E[|Y ε(x, t)− Y ε(y, s)|p] . εpa,

and from (2.24), writing Y ε(x, t)−Y ε(y, s) as the sum of an integral of ∂xY
ε and an

integral of ∂tY
ε, we get

E[|Y ε(x, t)− Y ε(y, s)|p] . (|x− y|+ |t− s|)pε−pb.

Hence from Hölder’s inequality

E[|Y ε(x, t)− Y ε(y, s)|α+β] ≤ (|x− y|+ |t− s|)βεαa−βb.

Provided β > 2 and α > βb/a, we obtain an estimate which allows us to deduce the
result from a combination of (2.23) and Kolmogorov’s Lemma.
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We will also need

Lemma 2.10 The function t → V̄ε(t) is continuous, and, for each ε > 0, there
exists a positive constant V̄ 0

ε such that

V̄ε(t)→ V̄ 0
ε , as t→∞.

Furthermore,

lim
ε→0

V̄ 0
ε = V̄ :=

∞∫
0

∫
R

Φ(y, t)

2
√
πt

dy dt,

and V̄ε(t)→ V̄ as ε→ 0, uniformly in t ∈ [1,+∞].

Proof. Writing Φε for the correlation function of Vε and using the definition of V̄ε(t),
we have

V̄ε(t) = E

[(
∂

∂x

t∫
0

∫
R

pt−s(x− y)Vε(y, s) dy ds

)2]

= E

[( t∫
0

∫
R

p′t−s(x− y)Vε(y, s) dy ds

)2]

= E

[ t∫
0

t∫
0

∫
R

∫
R

p′t−s(x− y)p′t−r(x− z)Vε(y, s)Vε(z, r) dy dz ds dr

]

=

t∫
0

t∫
0

∫
R

∫
R

p′t−s(x− y)p′t−r(x− z)Φε(y − z, s− r) dy dz ds dr

=

t∫
0

t∫
0

∫
R

∫
R

p′s(y)p′r(z)Φε(y − z, s− r) dy dz ds dr .

It is easy to check that, for each ε > 0, this integral is a continuous function of
t and that it converges, as t → +∞. Performing the change of variables y′ =

y
ε1/2+α/4

, z′ = z
ε1/2+α/4

, s′ = s
ε1+α/2

, r′ = r
ε1+α/2

, renaming the new variables and setting

Tε = ε−1−α/2t, we obtain

V̄ε(t) =
1

16π

Tε∫
0

Tε∫
0

∫
R

∫
R

y

s3/2

z

r3/2
e
− y

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr.
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We represent the integral on the right-hand side as

V̄ε(t) =
1

16π

Tε∫
0

Tε∫
0

∫
R

∫
R

z2

s3/2r3/2
e
− z

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr + rε(t). (2.25)

The further analysis relies on the following limit relation:

lim
ε→0

sup
0<t≤+∞

|rε(t)| = 0. (2.26)

In order to justify it we denote κ = 1
2
− α

4
and κ1 = κ

10
, and divide the integration

area into four parts as follows

Π1 = {(y, z, s, r) ∈ R2 × (R+)2 : s ≤ εκ1 , r ≤ εκ1},
Π2 = {(y, z, s, r) ∈ R2 × (R+)2 : εκ1 < s ≤ Tε, r ≤ εκ1},
Π3 = {(y, z, s, r) ∈ R2 × (R+)2 : s ≤ εκ1 , εκ1 < r ≤ Tε},
Π4 = {(y, z, s, r) ∈ R2 × (R+)2 : εκ1 < s ≤ Tε, ε

κ1 < r ≤ Tε}.

In Π1 we have

∫
Π1

|y| |z|
s

3
2 r

3
2

e
− y

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dx dy ds dr ≤ C2

εκ1∫
0

εκ1∫
0

dsdr

s
1
2 r

1
2

= 4C2εκ1 . (2.27)

To estimate the integral over Π2 we first notice that there exists a constant C1 such
that

|y|
s

1
2

e−
y2

4s ≤ C1
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uniformly over ass s > 0 and y ∈ R. Then,∫
Π2

|y| |z|
s

3
2 r

3
2

e
− y

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr

≤ C1

Tε∫
εκ1

εκ1∫
0

∫
R

|z| dz dr ds
s r

3
2

e−
z2

r

∫
R

Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy

= C1ε
κ

Tε∫
εκ1

εκ1∫
0

∫
R

e−
z2

r Φ
( s−r
ε
α
2
−1

) |z| dz dr ds
s r

3
2

= CC1ε
κ

Tε∫
εκ1

εκ1∫
0

Φ
( s−r
ε
α
2
−1

)dr ds
s r

1
2

≤ CC1ε
κ

Tε∫
εκ1

εκ1∫
0

Φ̂
( s

ε
α
2
−1

)dr ds
s r

1
2

= 2CC1ε
κε

κ1
2

Tε∫
εκ1

Φ̂
( s

ε
α
2
−1

)ds
s
≤ 2CC1ε

κε
κ1
2

∞∫
εκ1+2κ

Φ̂(s)
ds

s

≤ C2(κ1 + 2κ)εκ+
κ1
2 | log ε|;

(2.28)

here Φ(t) =
∫
R Φ(x, t)dx, and Φ̂(t) stands for max{Φ(s) : t− 1 ≤ s ≤ t}. A similar

estimate holds true for the integral over Π3. Therefore,

lim
ε→0

sup
0<t≤+∞

∣∣∣ ∫
Π1∪Π2∪Π3

y

s3/2

z

r3/2
e
− y

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr

∣∣∣ = 0. (2.29)

We also have∫
Π1∪Π2

z2

s3/2r3/2
e
− z

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr

= Cεκ
Tε∫

0

εκ1∫
0

Φ
(s− r
ε−2κ

) ds dr

(s+ r)
3
2

= C

ε2κTε∫
0

εκ1+2κ∫
0

Φ(s− r) ds dr

(s+ r)
3
2

≤ C

1∫
0

εκ1+2κ∫
0

Φ(s− r) ds dr

(s+ r)
3
2

+ C

∞∫
1

εκ1+2κ∫
0

Φ(s− r) ds dr

(s+ r)
3
2

≤ C4ε
κ

(2.30)
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Combining this estimate with a similar estimate for the integral over Π1 ∪ Π3, we
obtain

lim
ε→0

sup
0<t≤+∞

∣∣∣ ∫
Π1∪Π2∪Π3

z2

s3/2r3/2
e
− z

2

4s
− z

2

4r Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr

∣∣∣ = 0. (2.31)

In order to justify (2.26) it remains to show that

lim
ε→0

sup
0<t≤+∞

∫
Π4

∣∣yze− y24s− z24r − z2e
− z

2

4s
− z

2

4r
∣∣

s3/2r3/2
Φ
( y−z
ε

1
2
−α

4

,
s−r
ε
α
2
−1

)
dy dz ds dr

∣∣∣ = 0 (2.32)

We first estimate

Jε(t) :=

∫
Π4

|yz|
s3/2r3/2

e
− z

2

4r
∣∣e− y24s − e− z24s ∣∣Φ(y−z

εκ
,
s−r
ε−2κ

)
dy dz ds dr

≤ 1

4

∫
Π4

|yz| |z2 − y2|
s5/2r3/2

e
− z

2

4r

(
e
− y

2

4s + e
− z

2

4s

)
Φ
(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr (2.33)

. εκ
∫
Π4

( |y|3 + |y−z|3

s5/2r3/2
e
− y

2

4s +
|z|3 + |y−z|3

s5/2r3/2
e
− z

2

4s

)
e
− z

2

4r Φ1

(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr

with Φ1(x, t) = |x|Φ(x, t); here we have used the inequality |ea−eb| ≤ |b−a|(ea+eb)
and the estimates |yz||y + z| ≤ C(|y|3 + |y− z|3) and |yz||y + z| ≤ C(|z|3 + |y− z|3)
that follow from the Young inequality. Let us estimate the integral

εκ
∫
Π4

|y|3

s5/2r3/2
e
− y

2

4s e
− z

2

4r Φ1

(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr

≤ C3ε
κ
∫
Π4

1

sr3/2
e
− z

2

4r Φ1

(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr ≤ C4ε

2κ

∞∫
εκ1

∞∫
εκ1

1

sr
Φ1

(s−r
ε−2κ

)
ds dr

= C4ε
2κ

∞∫
εκ1+2κ

∞∫
εκ1+2κ

Φ1

(
s−r

)ds dr
sr

≤ C5ε
2κ(log ε)2;

here C3 = max(x3e−x
2
), and Φ1(t) stands for

∫
R Φ1(x, t)dx. Other terms on the

right-hand side of (2.33) can be estimated in a similar way. Thus we obtain

lim
ε→0

sup
0<t≤∞

Jε(t) = 0. (2.34)
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The inequality∫
Π4

|yz − z2|
s3/2r3/2

e
− z

2

4r e
− z

2

4s Φ
(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr ≤ Cεκ(log ε)2

can be obtained in the same way with a number of simplifications. This yields (2.26).
It remains to notice that

Tε∫
εκ1

Tε∫
εκ1

∫
R

∫
R

z2

s3/2r3/2
e
− z

2

4s
− z

2

4r Φ
(y−z
εκ

,
s−r
ε−2κ

)
dy dz ds dr

= εκ
Tε∫

εκ1

Tε∫
εκ1

∫
R

z2

s3/2r3/2
e
− z

2

4s
− z

2

4r Φ
(s−r
ε−2κ

)
dz ds dr

= C0ε
κ

Tε∫
εκ1

Tε∫
εκ1

Φ
(s−r
ε−2κ

) ds dr

(s+ r)3/2
= C0

ε−αt∫
εκ1+2κ

ε−αt∫
εκ1+2κ

Φ(s−r) ds dr

(s+ r)3/2

= C0

∞∫
0

∞∫
0

Φ(s−r) ds dr

(s+ r)3/2
+Rε(t)

with C0 =
∫
R z

2e−z
2/4 dz, and

lim
ε→0

sup
1≤t≤+∞

|Rε(t)| = 0.

Combining the last two relations with (2.25) and (2.26), we obtain the desired state-
ment.

Lemma 2.11 For any T > 0, any even integer k ≥ 2, any 0 < β < 1/k, any p > k
and any κ > 0, there exists a constant C such that for all 0 ≤ t ≤ T , ε > 0,(

E‖Y ε(t)‖p0,pκ
)1/p ≤ C ε

α
4

(1−κ) ,
(
E‖∂xY ε(t)‖p0,pκ

)1/p ≤ C ε−κ,(
E‖∂xY ε(t)‖pβ,pκ

)1/p ≤ Cε−κ .

Proof. We establish the estimates of the norms of ∂xY
ε(t) only. The norm of Y ε(t)

is estimated similarly. Let q > 1 and p = qk. For any x < y, we have the identity

|∂xY ε(t, y)− ∂xY ε(t, x)|k = k

∫ y

x

(∂xY
ε(t, z)− ∂xY ε(t, x))k−1∂2

xY
ε(t, z)dz .
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Raising this to the power q and taking expectations, we obtain

E(|∂xY ε(t, y)− ∂xY ε(t, x)|p) ≤ kq
∣∣∣∣∫ y

x

(∂xY
ε(t, z)− ∂xY ε(t, x))k−1∂2

xY
ε(t, z)dz

∣∣∣∣q
. (y − x)q−1

∫ y

x

E
(∣∣(∂xY ε(t, z)− ∂xY ε(t, x))k−1∂2

xY
ε(t, z)

∣∣q)dz
. (y − x)q

√
E
(
|∂xY ε(t, x)|2q(k−1))E(|∂2

xY
ε(t, x)|2q

)
. (y − x)qε−q, (2.35)

where we have used the stationarity (in z) of the processes ∂xY
ε(t, z) and ∂2

xY
ε(t, z),

as well as the estimates (2.16) and (2.17) from Lemma 2.8.
As a consequence of Kolmogorov’s Lemma, there exists a stationary sequence of

positive random variables {ξn}n∈Z such that for every n ∈ Z, the bound

sup
x∈[n,n+1]

|∂xY ε(t, x)| ≤ ξn ,

holds almost surely, and such that
(
Eξpn

)1/p
. ε−1/k for every p ≥ 1. The bound on

‖∂xY ε(t)‖0,pκ then follows at once.
The bound on ‖∂xY ε(t)‖β,pκ follows in virtually the same way, using the fact that

(2.35) also yields the bound

sup
x,y∈[n−1,n+1]

|∂xY ε(t, x)− ∂xY ε(t, y)|
|x− y|β

≤ ξ̃n ,

for some stationary sequence of random variables ξ̃n which has all of its moments
bounded in the same way as the sequence {ξn}.

We further obtain the following bound on the “negative Hölder norm” of ∂xY
ε:

Corollary 2.12 For any T > 0, k being any even integer, p > k and κ = 1/k, there
exists a constant CT,p,κ such that(

E‖∂xY ε(t)‖p− 1
4
,pκ

)1/p

≤ CT,p,κ ε
α/16−κ ,

for all 0 ≤ t ≤ T , ε > 0.

Proof. We note that

‖∂xY ε(t)‖− 1
4
,pκ

= sup
|x−y|≤1

|Y ε(t, x)− Y ε(t, y)|
pκ(x)|x− y|3/4

,
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‖Y ε(t)‖0,pκ = sup
x

|Y ε(t, x)|
pκ(x)

, ‖∂xY ε(t)‖0,pκ = sup
x

|∂xY ε(t, x)|
pκ(x)

.

We have, for |x− y| ≤ 1,

|Y ε(t, x)− Y ε(t, y)|
pκ(x)|x− y|3/4

=

(
|Y ε(t, x)− Y ε(t, y)|

pκ(x)

)1/4( |Y ε(t, x)− Y ε(t, y)|
pκ(x)|x− y|

)3/4

≤
(
|Y ε(t, x)|
pκ(x)

+ Cκ
|Y ε(t, y)|
pκ(y)

)1/4(
Cκ sup

x≤z≤y

|∂xY ε(t, z)|
pκ(z)

)3/4

.

It remains to take supremums and apply Hölder’s inequality.

We have similar results for Zε(x, t).

Lemma 2.13 For each p ≥ 1, there exists a constant C such that for all ε > 0,
t ≥ 0, x ∈ R, [

E
(
|Zε(x, t)|2

)]1/2 ≤ C
(
1 + t2

)
εγα/2.

Proof. The main ingredient in the proof is a bound on the correlation function of
the right hand side of the equation for Zε, which we denote by

Λε(z, z
′) = Cov

(
|∂xY ε(z)|2, |∂xY ε(z′)|2

)
.

Inserting the definition of Y ε, we obtain the identity

Λε(z, z
′) =

∫
· · ·
∫
P̃ (z−z1)P̃ (z−z2)P̃ (z′−z3)P̃ (z′−z4)Ψ(4)

ε (z1, · · · , z4) dz1 · · · dz4 ,

where
P̃ (z) = P̃ (x, t) = ∂xpt(x) ,

with pt the standard heat kernel and

Ψ(4)
ε (z1, · · · , z4) = ε−2−αΨ(4)

(x1

ε
, · · · , x4

ε
,
t1
εα
, · · · , t4

εα

)
.

Here, we used the shorthand notation zi = (xi, ti), and integrals over zi are under-
stood to be shorthand for

∫ t
0

∫
R
dxi dti. We now make use of Lemma 2.3, which

allows to factor this integral as

|Λε(z, z
′)| .

(
ε−1−α

2

∫ ∫
P̃ (z − z1)P̃ (z′ − z3)%ε(z1 − z3) dz1 dz3

)2
def
= %̃2

ε(z, z
′) ,

where we used the shorthand notation

%ε(x, t) = %
(x
ε
,
t

εα

)
.

We will show below that the following bound holds:
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Lemma 2.14

%̃ε(z, z
′) .

(
1 ∧ εαγ/2

dγp(z, z′)

)
+ (1 + t+ t′)εα/2

def
= ζε(z − z′) + (1 + t+ t′)εα/2 ,

where dp denotes the parabolic distance given by

dp(z, z
′)2 = |x− x′|2 + |t− t′| .

Taking this bound for granted, we write as in the proof of Lemma 2.8 Zε =
Zε
− +

∑
n>0 Z

ε
n with

Zε
n(z) = 2−2n

∫
ϕn(z − z′)

(
|∂xY ε(z′)|2 − V̄ε(t′)

)
dz′ ,

and similarly for Zε
−. Squaring this expression and inserting the bound from Lemma 2.14,

we obtain

E|Zε
n(z)|2 . 2−4n

∫ ∫
ϕn(z − z′)ϕn(z − z′′)

(
ζ2
ε (z′ − z′′) + (1 + t′ + t′′)2εα

)
dz′ dz′′

. 2−n
∫
ζ2
ε (z′) dz′ + 2−4n(1 + t)4εα ,

where we made use of the scaling of ϕn given by (2.19). Performing the corresponding
bound for Zε

−, we similarly obtain

E|Zε
−(z)|2 . t

∫
ζ2
ε (z′) dz′ + (1 + t)4εα .

The claim now follows from the bounds∫
ζ2
ε (z′) dz′ ≤

∫ t

0

∫
R

εαγ(
|x|2 + |s|

)γ dx ds . εαγt
3
2
−γ .

Proof of Lemma 2.14. Similarly to the proof of Lemma 2.8, we write

%̃ε(z, z
′) =

∑
n1≥0

∑
n2≥0

%̃n1,n2
ε (z, z′) ,

with

%̃n1,n2
ε (z, z′) = ε−1−α

2 2−n1−n2

∫ ∫
ϕ̃n1(z − z1)ϕ̃n2(z

′ − z2)%ε(z1 − z2) dz1 dz2 .
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Here, for n ≥ 1, ϕ̃n is defined as in the proof of Lemma 2.8, whereas ϕ̃0 is different
from what it was there and is defined as

ϕ̃0(x, t) = ∂xp
−
t (x) .

By symmetry, we can restrict ourselves to the case n1 ≥ n2, which we will do in the
sequel. In the case where n2 > 0, the above integral could be restricted to the set of
pairs (z1, z2), such that their parabolic distance satisfies

dp(z1, z2) ≥
(
dp(z, z

′)− 22−n2
)

+
,

where (· · · )+ denotes the positive part of a number.
Replacing ϕ̃n2 by its supremum and integrating out ϕ̃n1 and %ε yields the bound

%̃n1,n2
ε (z, z′) .

(
1 + δn2,0(t+ t′)

)
22n2−n1εα/2

∫
Aε(n2)

%(z3) dz3 ,

where Aε(0) = R2 and

Aε(n2) =
{
z3 : dp(0, z3) ≥ ε−α/2

(
dp(z, z

′)− 22−n2
)

+

}
,

for n2 > 0. (Remark that the prefactor 1 + t + t′ is relevant only in the case
n1 = n2 = 0.) It follows from the integrability of % that one always has the bound

%̃n1,n2
ε (z, z′) .

(
1 + δn2,0(t+ t′)

)
22n2−n1εα/2 . (2.36)

Moreover, we deduce from Assumption 1.4 that, whenever n2 > 0 and d(z, z′) ≥
23−n2 , one has the improved bound: for any γ > 0,

%̃n1,n2
ε (z, z′) . 22n2−n1εα/2

(
1 ∧ εαγ/2

dγp(z, z′)

)
. (2.37)

The bound (2.36) is sufficient for our needs in the case n2 = 0, so we assume that
n2 > 0 from now on.

We now obtain a second bound on %̃n1,n2
ε (z, z′) which will be useful in the regime

where n2 is very large. Since the integral of ϕ̃n1 is bounded independently of n1, we
obtain

%̃n1,n2
ε (z, z′) . ε−1−α

2 2−n1−n2 sup
dp(z1,z)≤21−n1

∫
ϕ̃n2(z

′ − z2)%ε(z1 − z2) dz2 . (2.38)

We now distinguish between three cases, which depend on the size of z − z′.
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Case 1: dp(z, z
′) ≤ εα/2. In this case, we proceed as in the proof of Lemma 2.6,

which yields

%̃n1,n2
ε (z, z′) . ε−1−α

2 2−n1−n2 sup
z1

∫
ϕ̃n2(z2)%ε(z2 − z1) dz2

. ε−1−α
2 2−n1−n2 sup

x1

∫
R

sup
s
%ε(x2 − x1, s)

∫ t

0

ϕ̃n2(x2, t2) dt2 dx2

. ε−1−α
2 2−n1

∫
R

sup
s
%ε(x2, s) dx2 . ε−

α
2 2−n1 . (2.39)

Case 2: |x− x′| ≥ dp(z, z
′)/2 ≥ εα/2/2. Note that in (2.38), the argument of %ε can

only ever take values with |x1 − x2| ∈ Bε(n2) where

Bε(n2) =
{
x̄ : |x̄| ≥

(
|x− x′| − 22−n2

)}
.

As a consequence, we obtain the bound

%̃n1,n2
ε (z, z′) . ε−1−α

2 2−n1−n2 sup
x̄∈Bε(n2)

sup
s∈R

%ε(x̄, s) .

The case of interest to us for this bound will be 26−n2 ≤ εα/2, in which case we deduce
from this calculation and Assumption 1.4 that

%̃n1,n2
ε (z, z′) . ε−1−α

2 2−n1−n2

( ε

dp(z, z′)

)γ
,

where γ is an arbitrarily large exponent. Choosing γ large enough, we conclude that
one also has the bound

%̃n1,n2
ε (z, z′) . ε−

α
2 2−n1

(
1 ∧ εα/2

dp(z, z′)

)γ
, (2.40)

which will be sufficient for our needs.
Case 3: |t− t′| ≥ d2

p(z, z
′)/2 ≥ εα/2. Similarly, we obtain

%̃n1,n2
ε (z, z′) . ε−

α
2 2−n1

∫
R

sup
s∈B′ε(n2)

%ε(x2, s) dx2 ,

where
B′ε(n2) =

{
s : |s| ≥ ε−α

(
|t− t′| − 28−2n2

)}
.
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Restricting ourselves again to the case 26−n2 ≤ εα/2, this yields as before

%̃n1,n2
ε (z, z′) . ε−

α
2 2−n1

(
1 ∧ εα/2

dp(z, z′)

)γ
. (2.41)

It now remains to sum over all values n1 ≥ n2 ≥ 0.
For n2 = 0, we sum the bound (2.36), which yields∑

n1≥0

%̃n1,0
ε (z, z′) ≤ (1 + t+ t′)εα/2 .

In order to sum the remaining terms, we first consider the case dp(z, z
′) < εα/2. In

this case, we use (2.36) and (2.39) to deduce that∑
n1≥n2

%̃n1,n2
ε (z, z′) . 2n2εα/2 ∧ 2−n2ε−α/2 ,

so that in this case %̃ε(z, z
′) . 1 + (1 + t+ t′)εα/2.

It remains to consider the case dp(z, z
′) ≥ εα/2. For this, we break the sum over

n2 in three pieces:

N1 = {n2 ≥ 1 : 2−n2 ≥ d(z, z′)/8} ,

N2 = {n2 ≥ 1 : 2−6εα/2 ≤ 2−n2 < d(z, z′)/8} ,

N3 = {n2 ≥ 1 : 2−n2 < 2−6εα/2} .

For n2 ∈ N1, we only make use of the bound (2.36). Summing first over n1 ≥ n2 and
then over n2 ∈ N1, we obtain∑

n2∈N1

∑
n1≥n2

%̃n1,n2
ε (z, z′) .

εα/2

dp(z, z′)
.

For n2 ∈ N2, we only make use of the bound (2.37). Summing again first over n1 ≥ n2

and then over n2 ∈ N1, we obtain∑
n2∈N2

∑
n1≥n2

%̃n1,n2
ε (z, z′) .

εαγ/2

dγp(z, z′)
.

In the last case, we similarly use either (2.40) or (2.41), depending on whether
|x− x′| ≥ dp(z, z

′)/2 or |t− t′| ≥ d2
p(z, z

′)/2, which yields again∑
n2∈N3

∑
n1≥n2

%̃n1,n2
ε (z, z′) .

εαγ/2

dγp(z, z′)
.

Combining the above bounds, the claim follows.
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Lemma 2.15 For any T > 0, p ≥ 1, κ > 0, 0 < β < 1, there exists a constant
CT,p,κ,β such that for all 0 ≤ t ≤ T , ε > 0,(

E‖∂xZε(t)‖pβ,pκ
)1/p ≤ CT,p,κ,βε

−κ .

Proof. This is a corollary of Lemma 2.11 and Proposition 2.2.

As a Corollary we deduce

Corollary 2.16 For any T > 0, p ≥ 1, κ > 0, there exists a constant CT,κ such that
for all 0 ≤ t ≤ T , ε > 0,∣∣E‖Zε(t)‖p0,pκ

∣∣1/p ≤ CT,κε
α/2−κ ,

∣∣E‖∂xZε(t)‖p0,pκ
∣∣1/p ≤ CT,κε

α/4−κ .

We will need moreover

Corollary 2.17 As ε→ 0, Zε(x, t)→ 0 in probability, locally uniformly in (x, t).

Proof. It follows from estimate (2.16) that for any p > 1 and any bounded subset
K ⊂ R× R+, there exists a constant Cp,K such that

E

(∫
K

(
|∂xY ε(x, t)|2 − V ε)p

dxdt

)
≤ Cp,K .

Then, by the Nash estimate, we obtain

E‖Zε‖Cγ(K) ≤ CK , (2.42)

where the Hölder exponent γ > 0 and CK do not depend on ε. As a consequence of
the first estimate of Corollary 2.16 we have

E‖Zε‖pLp(K) ≤ Cp,Kε
p(α/2−κ). (2.43)

Combining (2.42) and (2.43) one can easily derive the required convergence.
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3 Proof of the main result

Before concluding with the proof of our main theorem, we prove a result for a
parabolic heat equation with coefficients which live in spaces of weighted Hölder
continuous functions.

We consider an abstract evolution equation of the type

∂tu = ∂2
xu+ F ∂xu+Gu , (3.1)

where F and G are measurable functions of time, taking values in C−βpκ for some
suitable κ > 0 and β < 1

2
. The main result of this section is the following:

Theorem 3.1 Let β and κ be positive numbers such that β + κ < 1
2

and let F and
G be functions in Lploc(R+, C−βpκ ) for every p ≥ 1.

Let furthermore ` ∈ R and u0 ∈ C3/2
e` . Then, there exists a unique global mild

solution to (3.1). Furthermore, this solution is continuous with values in C3/2
em for

every m < ` and the map (u0, F,G) 7→ u is jointly continuous in these topologies.

Proof. We will show a slightly stronger statement, namely that for every δ > 0
sufficiently small, the mild solution has the property that ut ∈ Cγe`−δt for t ∈ [0, T ] for
arbitrary values of T > 0. We fix T , δ and ` from now on.

We then write
|||u|||δ,`,T

def
= sup

t∈[0,T ]

‖ut‖ 3
2
,e`−δt

,

and we denote by Bδ,`,T the corresponding Banach space. With this notation at hand,
we define a map MT : Bδ,`,T → Bδ,`,T by

(
MTu

)
t

=

∫ t

0

Pt−s
(
Fs ∂xus +Gs us

)
ds , t ∈ [0, T ] .

It follows from Proposition 2.2 that we have the bound

∥∥(MTu
)
t

∥∥
3
2
,e`−δt

≤ C

∫ t

0

(t− s)−
3+2β

4

∥∥Fs ∂xus +Gs us
∥∥
−β,e`−δt

ds .

Combining Proposition 2.1 with (2.3) and (2.4), we furthermore obtain the bound∥∥Fs ∂xus∥∥−β,e`−δt ≤ C
(
δ|t− s|

)−κ‖Fs‖−β,pκ∥∥∂xus∥∥ 1
2
,e`−δs

≤ C
(
δ|t− s|

)−κ‖Fs‖−β,pκ|||u|||δ,`,T ,
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where the proportionality constant C is uniformly bounded for δ ∈ (0, 1] and bounded
` and s. A similar bound holds for Gsus so that, combining these bounds and using
Hölder’s inequality for the integral over t, we obtain the existence of constants ζ > 0
and p > 1 such that the bound

|||MTu|||δ,`,T ≤ Cδ−κT ζ
(
‖F‖Lp(C−βpκ ) + ‖G‖Lp(C−βpκ )

)
|||u|||δ,`,T ,

holds. Since the norm of this operator is strictly less than 1 provided that T is small
enough, the short-time existence and uniqueness of solutions follow from Banach’s
fixed point theorem. The existence of solutions up to the final time T follows by
iterating this argument, noting that the interval of short-time existence restarting
from u(t) at time t can be bounded from below by a constant that is uniform over
all t ∈ [0, T ], as a consequence of the linearity of the equation.

Actually, we obtain the bound

‖ut‖ 3
2
,e`−δt

. exp
(
Ct
(
‖F‖Lp(C−βpκ ) + ‖G‖Lp(C−βpκ )

)1/ζ)‖u0‖ 3
2
,e`

,

where the constants C and ζ depend on the choice of ` and δ.
The solutions are obviously linear in u0 since the equation is linear in u. It

remains to show that the solutions also depend continuously on F and G. Let ū be
the solution to the equation

∂tū = ∂2
xū+ F̄ ∂xū+ Ḡ ū , (3.2)

and write % = u− ū. The difference % then satisfies the equation

∂t% = ∂2
x%+ F ∂x%+G%+ (F − F̄ ) ∂xū+ (G− Ḡ) ū ,

with zero initial condition. Similarly to before, we thus have

%t =
(
MT%

)
t
+

∫ t

0

Pt−s
(
(Fs − F̄s) ∂xūs + (Gs − Ḡs) ūs

)
ds .

It follows from the above bounds that

|||%|||δ,`,T . |||MT%|||δ,`,T + Cδ−κT ζ
(
‖F − F̄‖Lp(C−βpκ ) + ‖G− Ḡ‖Lp(C−βpκ )

)
|||ū|||δ,`,T .

Over short times, the required continuity statement thus follows at once. Over fixed
times, it follows as before by iterating the argument.

Remark 3.2 In principle, one could obtain a similar result for less regular initial
conditions, but this does not seem worth the additional effort in this context.
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We now have finally all the ingredients in place to give the proof of our main
result.

Proof of Theorem 1.8. We apply Theorem 3.1 with β = 1
4

and κ = 1
8
. Note that the

equation (1.8) for vε is precisely of the form (3.1) with

F = 2∂xY
ε + 2∂xZ

ε , G = |∂xZε|2 + 2 ∂xZ
ε∂xY

ε .

It follows from Corollaries 2.12 and 2.16 that, for every p > 0 and δ > 0, one has the
bound ∣∣∣E ∫ T

0

‖F‖pβ,pκ dt
∣∣∣1/p . ε

α
16
−δ ,

say. Similarly, it follows from Lemma 2.11 and Corollary 2.16 that one actually has
the bound ∣∣∣E ∫ T

0

‖G‖p0,pκ dt
∣∣∣1/p . ε

α
4
−δ ,

which is stronger than what we required. As a consequence of Theorem 3.1, this
shows immediately that vε → u in probability, locally uniformly both in space and
in time. We conclude by recalling that from Corollary 2.9 and 2.17, the correctors
Y ε and Zε themselves converge locally uniformly to 0 in probability.
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