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Abstract
We show that the finite-volume Φ4 measure on the 3-dimensional torus is singular
with respect to the Gaussian Free Field (GFF) measure. This is in contrast
to the two-dimensional case where the corresponding measures are equivalent,
see [Nel66]. The proof furthermore reveals that the Φ4

3 measure fails to be
quasi-invariant under any smooth non-zero shift.

1 The proof

Take εn = exp(−en) and, for any distribution Φ as well as n ≥ 0 write

Φn = Φ ? %n , %n(x) = ε−dn %(x/εn) ,

for some nice % integrating to 1. For any fixed test function ψ, we then consider the
event

Aψ =
{

Φ : lim
n→∞

e−3n/4
〈

Φ3
n − 3aee

n

Φn − 9benΦ, ψ
〉

= 0
}
, (1.1)

for suitably chosen a and b. We claim that

Theorem 1.1 Let µ be the Φ4
3 measure and µ0 be the GFF. Then, there exist choices

of a and b such that µ(Aψ) = 1 for every smooth ψ. On the other hand, µ0(Aψ) = 0
for every choice of a, b with b 6= 0.

Furthermore, for any smooth ψ̂ 6≡ 0, and for a and b as above, there exists a
smooth test function ψ such that one has µ(Aψ + ψ̂) = 0.

Remark 1.2 The 3/4 appearing in the exponential could be anything between 1/2
and 1. At 1/2, the limit does not exist anymore under µ, but the corresponding
sequence is tight. If we make the exponent greater than 1, then the event fails to
distinguish between µ and µ0.
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Remark 1.3 The fact that the last occurrence of Φ in (1.1) does not have a subscript
n is not a typo, even though this would probably not make much of a difference. It
turns out however that the analysis is more natural as it is written.

Remark 1.4 At least formally, the lack of quasi-invariance under shifts by smooth
functions is closely related to the fact that, if Φ is a sample from either µ (or from
µ0 for that matter), then there is no good candidate for its “renormalised cube”.
Some rigorous versions of this fact were known before, see for example [ALZ06]
for an “infinitesimal version” of this lack of quasi-invariance.

The fact that µ0(Aψ) = 0 is easy to show, so we only consider the case of the Φ4
3

measure. We exploit the fact that this measure is invariant under the Φ4
3 dynamics

[HM15], so that we can sample from it by looking at the solution at some fixed time
(say 1) with initial condition µ. It follows from [Hai14, Sec. 10] that this solution
can be written as a modelled distribution in Dγ for γ ∈ (1, 3/2) as

Φ = + ϕ 1 + + 3ϕ + ϕ′X ,

for some continuous functions ϕ and ϕ′. (Actually, ϕ is almost Hölder-1/2 and
the same is true for ϕ′ but we don’t care about that. Also, ϕ′ is of course not the
derivative / gradient of ϕ...) The underlying model here is the Φ4

3 model (Π,Γ)
constructed in [Hai14]. This is a model on space-time, but its restriction to the
relevant sector can be viewed as a model on space for any fixed instant of time,
see [HM15]. We write the corresponding distribution as Φ = RΦ with R the
reconstruction operator, which in this case, is simply given by Φ = Πz + ϕ, where
Πz is a GFF.

Now, an explicit calculation (or alternatively an application of [Hai14, Sec. 4])
shows that Φn can again be viewed as an element of Dγ with

Φn = + ϕ̃n 1 + + 3ϕ + ϕ̃′nX ,

for some functions ϕ̃n and ϕ̃′n as above. Furthermore, the elements Φn converge in
Dγ to a limit Φ∞ = + ϕ 1 + + 3ϕ + ϕ′X .

Note that the coefficient in front of is the “old” ϕ! Note also that one has
ϕ̃n = %n ? ϕ =: ϕn, but that ϕ̃′n does not in general coincide with either %n ? ϕ′ or
with the gradient of ϕn. Here, the red dot appearing in the symbols represents the
operation of convolution with %n, so we are really working in an extended regularity
structure. The model (Π,Γ) (now viewed as a model on space only!) is extended
canonically to this larger structure to a model (Π(n),Γ(n)) as in [Hai14, Thm ??].
The reason for the “red dot” notation is to suggest that as n→∞ the model on the
symbols with red dots converges to that with the red dots removed.

It follows that Φ3
n is an element of Dγ̄ for some γ̄ > 0, given by

Φ3
n = + 3ϕ̃n + 3 + 9ϕ + 3ϕ̃′n X + 3ϕ̃2

n + 6ϕ̃n + ϕ̃3
n 1 .
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Now if we canonically extend (Π(n),Γ(n)) to this structure, we see that things go
bad. However, we have the following facts.

Proposition 1.5 Let Mn be the renormalisation map associating the constants
aee

n to and ben to as in [BHZ16], so that in particular

Mn = − aeen1 , Mn = − aeen − 3ben ,
Mn X = X − aeenX , Mn = − aeen − ben1 ,
Mn = − 3aee

n

,

and denote by (Π̂(n), Γ̂(n)) the corresponding renormalised model. Then, there exist
choices of a and b such that on the sector spanned by all basis vectors except for ,
(Π̂(n), Γ̂(n)) converges in probability to a limiting model (Π̂, Γ̂) satisfying

Π̂z τ̂ = Πzτ , (τ̂ , τ ) ∈ {( , ), ( , ), ( , ), ( , )} .

Furthermore, one has e−βnΠ̂(n) → 0 in probability in Cα for every α < −3
2
and

every β > 1
2
.

Proof. Basically a corollary of [BHZ16], only the last statement needs some
verifying.

Let now R̂(n) denote the reconstruction operator associated to (Π̂(n), Γ̂(n)). A
simple calculation shows that one has

R̂(n)Φ3
n = Φ3

n − 3aee
n

Φn − 9benΦ .

Combining this with Proposition 1.5 immediately shows that

Φ3
n − 3aee

n

Φn − 9benΦ− Π̂(n) ,

converges in probability to a limiting distribution as n→∞. Taking into account
the last statement of Proposition 1.5 and the fact that

en|〈Φn − Φ, ψ〉| . enεn‖Φ‖C−1 → 0 ,

implies that µ(Aψ) = 1.
To show that µ(Aψ + ψ̂) = 0, we first note that

Φ2
n = + 2ϕ̃n + 2 + ϕ̃2

n 1 ,

so that in particular, similarly to above,

R̂(n)Φ2
n = Φ2

n − aee
n ,
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thus showing in the same way that Φ2
n − aee

n converges in probability to a limiting
distribution. We now write

(Φn − ψ̂)3 − (3aee
n

+ 9ben)(Φn − ψ̂) = Φ3
n − 3aee

n

Φn − 9benΦ− Π̂(n)

− 3ψ̂(Φ2
n − aee

n

) + 3ψ̂2Φn − ψ̂3

+ Π̂(n)

+ 9benψ̂ .

We now note that the first two lines converge to finite limits while the third line
converges to 0 when multiplied by e−βn and tested against ψ. The term on the last
line however gives rise to 9be(1−β)n〈ψ̂, ψ〉 which diverges for some choices of ψ.
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