Φ_3^4 is orthogonal to GFF

September 16, 2022

Abstract

We show that the finite-volume Φ^4 measure on the 3-dimensional torus is singular with respect to the Gaussian Free Field (GFF) measure. This is in contrast to the two-dimensional case where the corresponding measures are equivalent, see [Nel66]. The proof furthermore reveals that the Φ_3^4 measure fails to be quasi-invariant under any smooth non-zero shift.

1 The proof

Take $\varepsilon_n = \exp(-e^n)$ and, for any distribution Φ as well as $n \ge 0$ write

$$\Phi_n = \Phi \star \varrho_n , \qquad \varrho_n(x) = \varepsilon_n^{-d} \varrho(x/\varepsilon_n) ,$$

for some nice ρ integrating to 1. For any fixed test function ψ , we then consider the event

$$A_{\psi} = \left\{ \Phi : \lim_{n \to \infty} e^{-3n/4} \left\langle \Phi_n^3 - 3ae^{e^n} \Phi_n - 9be^n \Phi, \psi \right\rangle = 0 \right\}, \qquad (1.1)$$

for suitably chosen a and b. We claim that

Theorem 1.1 Let μ be the Φ_3^4 measure and μ_0 be the GFF. Then, there exist choices of a and b such that $\mu(A_{\psi}) = 1$ for every smooth ψ . On the other hand, $\mu_0(A_{\psi}) = 0$ for every choice of a, b with $b \neq 0$.

Furthermore, for any smooth $\hat{\psi} \neq 0$, and for a and b as above, there exists a smooth test function ψ such that one has $\mu(A_{\psi} + \hat{\psi}) = 0$.

Remark 1.2 The 3/4 appearing in the exponential could be anything between 1/2 and 1. At 1/2, the limit does not exist anymore under μ , but the corresponding sequence is tight. If we make the exponent greater than 1, then the event fails to distinguish between μ and μ_0 .

Remark 1.3 The fact that the last occurrence of Φ in (1.1) does not have a subscript n is not a typo, even though this would probably not make much of a difference. It turns out however that the analysis is more natural as it is written.

Remark 1.4 At least formally, the lack of quasi-invariance under shifts by smooth functions is closely related to the fact that, if Φ is a sample from either μ (or from μ_0 for that matter), then there is no good candidate for its "renormalised cube". Some rigorous versions of this fact were known before, see for example [ALZ06] for an "infinitesimal version" of this lack of quasi-invariance.

The fact that $\mu_0(A_{\psi}) = 0$ is easy to show, so we only consider the case of the Φ_3^4 measure. We exploit the fact that this measure is invariant under the Φ_3^4 dynamics [HM15], so that we can sample from it by looking at the solution at some fixed time (say 1) with initial condition μ . It follows from [Hai14, Sec. 10] that this solution can be written as a modelled distribution in \mathfrak{D}^{γ} for $\gamma \in (1, 3/2)$ as

$$\mathbf{\Phi} = \mathbf{i} + \varphi \, \mathbf{1} + \mathbf{\Psi} + 3\varphi \mathbf{\Psi} + \varphi' \, X \,,$$

for some continuous functions φ and φ' . (Actually, φ is almost Hölder-1/2 and the same is true for φ' but we don't care about that. Also, φ' is of course *not* the derivative / gradient of φ ...) The underlying model here is the Φ_3^4 model (Π, Γ) constructed in [Hai14]. This is a model on space-time, but its restriction to the relevant sector can be viewed as a model on space for any fixed instant of time, see [HM15]. We write the corresponding distribution as $\Phi = \Re \Phi$ with \Re the reconstruction operator, which in this case, is simply given by $\Phi = \Pi_z \mathbf{1} + \varphi$, where $\Pi_z \mathbf{1}$ is a GFF.

Now, an explicit calculation (or alternatively an application of [Hai14, Sec. 4]) shows that Φ_n can again be viewed as an element of \mathfrak{D}^{γ} with

$$\Phi_n = \mathbf{i} + \tilde{\varphi}_n \, \mathbf{1} + \mathbf{\dot{\Upsilon}} + 3\varphi \mathbf{\dot{\Upsilon}} + \tilde{\varphi}'_n \, X \, ,$$

for some functions $\tilde{\varphi}_n$ and $\tilde{\varphi}'_n$ as above. Furthermore, the elements Φ_n converge in \mathfrak{D}^{γ} to a limit $\Phi_{\infty} = \mathfrak{l} + \varphi \, \mathfrak{l} + \mathfrak{Y} + 3\varphi \mathfrak{Y} + \varphi' X$.

Note that the coefficient in front of Υ is the "old" φ ! Note also that one has $\tilde{\varphi}_n = \varrho_n \star \varphi =: \varphi_n$, but that $\tilde{\varphi}'_n$ does not in general coincide with either $\varrho_n \star \varphi'$ or with the gradient of φ_n . Here, the red dot appearing in the symbols represents the operation of convolution with ϱ_n , so we are really working in an extended regularity structure. The model (Π, Γ) (now viewed as a model on space only!) is extended canonically to this larger structure to a model ($\Pi^{(n)}, \Gamma^{(n)}$) as in [Hai14, Thm ??]. The reason for the "red dot" notation is to suggest that as $n \to \infty$ the model on the symbols with red dots converges to that with the red dots removed.

It follows that Φ_n^3 is an element of $\mathfrak{D}^{\bar{\gamma}}$ for some $\bar{\gamma} > 0$, given by

$$\mathbf{\Phi}_n^3 = \mathbf{U} + 3\tilde{\varphi}_n \,\mathbf{U} + 3\,\mathbf{U} + 9\varphi\,\mathbf{U} + 3\tilde{\varphi}_n'\,\mathbf{U}X + 3\tilde{\varphi}_n^2\,\mathbf{I} + 6\tilde{\varphi}_n\,\mathbf{U} + \tilde{\varphi}_n^3\,\mathbf{1} \,.$$

The proof

Now if we canonically extend $(\Pi^{(n)}, \Gamma^{(n)})$ to this structure, we see that things go bad. However, we have the following facts.

Proposition 1.5 Let M_n be the renormalisation map associating the constants ae^{e^n} to \forall and be^n to \forall as in [BHZ16], so that in particular

$$M_{n} \mathbf{U} = \mathbf{U} - ae^{e^{n}} \mathbf{1}, \qquad M_{n} \mathbf{U} = \mathbf{U} - ae^{e^{n}} \mathbf{Y} - 3be^{n} \mathbf{1},$$
$$M_{n} \mathbf{U} X = \mathbf{U} X - ae^{e^{n}} X, \qquad M_{n} \mathbf{U} = \mathbf{U} - ae^{e^{n}} \mathbf{Y} - be^{n} \mathbf{1},$$
$$M_{n} \mathbf{U} = \mathbf{U} - 3ae^{e^{n}} \mathbf{1},$$

and denote by $(\hat{\Pi}^{(n)}, \hat{\Gamma}^{(n)})$ the corresponding renormalised model. Then, there exist choices of a and b such that on the sector spanned by all basis vectors except for \mathfrak{U} , $(\hat{\Pi}^{(n)}, \hat{\Gamma}^{(n)})$ converges in probability to a limiting model $(\hat{\Pi}, \hat{\Gamma})$ satisfying

$$\hat{\Pi}_z \hat{\tau} = \Pi_z \tau , \quad (\hat{\tau}, \tau) \in \{(\mathfrak{U}, \mathbb{V}), (\mathfrak{U}, \mathfrak{V}), (\mathfrak{U}, \mathfrak{V}), (\mathfrak{U}, \mathfrak{V})\} .$$

Furthermore, one has $e^{-\beta n} \hat{\Pi}^{(n)} \mathfrak{U} \to 0$ in probability in \mathscr{C}^{α} for every $\alpha < -\frac{3}{2}$ and every $\beta > \frac{1}{2}$.

Proof. Basically a corollary of [BHZ16], only the last statement needs some verifying. \Box

Let now $\hat{\mathcal{R}}^{(n)}$ denote the reconstruction operator associated to $(\hat{\Pi}^{(n)}, \hat{\Gamma}^{(n)})$. A simple calculation shows that one has

$$\hat{\mathcal{R}}^{(n)}\boldsymbol{\Phi}_n^3 = \boldsymbol{\Phi}_n^3 - 3ae^{e^n}\boldsymbol{\Phi}_n - 9be^n\boldsymbol{\Phi} \; .$$

Combining this with Proposition 1.5 immediately shows that

$$\Phi_n^3 - 3ae^{e^n}\Phi_n - 9be^n\Phi - \hat{\Pi}^{(n)}\mathbf{U},$$

converges in probability to a limiting distribution as $n \to \infty$. Taking into account the last statement of Proposition 1.5 and the fact that

$$e^{n}|\langle \Phi_{n}-\Phi,\psi\rangle| \lesssim e^{n}\varepsilon_{n}\|\Phi\|_{\mathscr{C}^{-1}} \to 0$$
,

implies that $\mu(A_{\psi}) = 1$.

To show that $\mu(A_{\psi} + \hat{\psi}) = 0$, we first note that

$$\mathbf{\Phi}_n^2 = \mathbf{V} + 2\tilde{arphi}_n \mathbf{1} + 2\mathbf{V} + \tilde{arphi}_n^2 \mathbf{1}$$
,

so that in particular, similarly to above,

$$\hat{\mathfrak{R}}^{(n)} \pmb{\Phi}_n^2 = \Phi_n^2 - a e^{e^n}$$
 ,

thus showing in the same way that $\Phi_n^2 - ae^{e^n}$ converges in probability to a limiting distribution. We now write

$$\begin{split} (\Phi_n - \hat{\psi})^3 - (3ae^{e^n} + 9be^n)(\Phi_n - \hat{\psi}) &= \Phi_n^3 - 3ae^{e^n}\Phi_n - 9be^n\Phi - \hat{\Pi}^{(n)} \mathbf{\mathfrak{U}} \\ &- 3\hat{\psi}(\Phi_n^2 - ae^{e^n}) + 3\hat{\psi}^2\Phi_n - \hat{\psi}^3 \\ &+ \hat{\Pi}^{(n)} \mathbf{\mathfrak{U}} \\ &+ 9be^n\hat{\psi} \;. \end{split}$$

We now note that the first two lines converge to finite limits while the third line converges to 0 when multiplied by $e^{-\beta n}$ and tested against ψ . The term on the last line however gives rise to $9be^{(1-\beta)n}\langle \hat{\psi}, \psi \rangle$ which diverges for some choices of ψ .

References

- [ALZ06] S. ALBEVERIO, S. LIANG, and B. ZEGARLINSKI. Remark on the integration by parts formula for the φ_3^4 -quantum field model. *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **9**, no. 1, (2006), 149–154. doi:10.1142/S0219025706002275.
- [BHZ16] Y. BRUNED, M. HAIRER, and L. ZAMBOTTI. Algebraic renormalisation of regularity structures. *ArXiv e-prints* (2016). arXiv:1610.08468.
- [Hai14] M. HAIRER. A theory of regularity structures. *Invent. Math.* **198**, no. 2, (2014), 269–504. arXiv:1303.5113. doi:10.1007/s00222-014-0505-4.
- [HM15] M. HAIRER and K. MATETSKI. Discretisations of rough stochastic PDEs. ArXiv *e-prints* (2015). arXiv:1511.06937. AoP, to appear.
- [Nel66] E. NELSON. A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), 69–73. M.I.T. Press, Cambridge, Mass., 1966.